QuaPy/Retrieval/kdey_bandwidth_selection_qu...

89 lines
2.9 KiB
Python

import os.path
import pickle
from collections import defaultdict
from pathlib import Path
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVC
import quapy as qp
from Retrieval.commons import RetrievedSamples, load_sample
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
from quapy.data.base import LabelledCollection
from experiments import benchmark_name, reduceAtK, run_experiment
from os.path import join
from tqdm import tqdm
from result_table.src.table import Table
def methods(classifier):
for i, bandwidth in enumerate(np.linspace(0.01, 0.1, 10)):
yield (f'KDE{str(i).zfill(2)}', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=bandwidth))
if __name__ == '__main__':
data_home = 'data-modsel'
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
method_names = [m for m, *_ in methods(None)]
class_mode = 'multiclass'
dir_names={
'gender': '100K_GENDER_TREC21_QUERIES/100K-NEW-QUERIES',
'continent': '100K_CONT_TREC21_QUERIES/100K-NEW-QUERIES',
'years_category': '100K_YEARS_TREC21_QUERIES/100K-NEW-QUERIES'
}
for class_name in ['gender', 'continent', 'years_category']:
tables_mrae = []
benchmarks = [benchmark_name(class_name, k) for k in Ks]
for data_size in ['100K']:
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks, methods=method_names)
tables_mrae.append(table_mrae)
class_home = join(data_home, dir_names[class_name])
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}_{class_mode}.pkl')
test_rankings_path = join(data_home, 'testRanking-TREC21-Queries_Results.json')
test_query_prevs_path = join('data', 'prevelance_vectors_judged_docs.json')
results_home = join('results', 'modsel', class_name, data_size)
tfidf, classifier, conf_matrix = pickle.load(open(classifier_path, 'rb'))
experiment_prot = RetrievedSamples(
class_home,
test_rankings_path,
test_query_prevs_path,
vectorizer=tfidf,
class_name=class_name,
classes=classifier.classes_
)
for method_name, quantifier in methods(classifier):
results_path = join(results_home, method_name + '.pkl')
results = qp.util.pickled_resource(results_path, run_experiment)
for k in Ks:
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
Table.LatexPDF(f'./latex/modsel/{class_name}.pdf', tables=tables_mrae)