QuaPy/eDiscovery/plot.py

50 lines
1.1 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
file = './results/RCV1.C4.csv'
# plot the data
fig, axs = plt.subplots(3)
while True:
df = pd.read_csv(file, sep='\t')
xs = df['it']
y_r = df['R']
y_rhat = df['Rhat']
y_rhatCC = df['RhatCC']
label='R'
axs[0].plot(xs, y_rhat, label='$\hat{'+label+'}$')
axs[0].plot(xs, y_rhatCC, label='$\hat{'+label+'}_{CC}$')
axs[0].plot(xs, y_r, label=label)
axs[0].legend()
axs[0].grid()
y_r = df['te-prev']
y_rhat = df['te-estim']
y_rhatCC = df['te-estimCC']
label='P'
axs[1].plot(xs, y_rhat, label='$\hat{'+label+'}$')
axs[1].plot(xs, y_rhatCC, label='$\hat{'+label+'}_{CC}$')
axs[1].plot(xs, y_r, label=label)
axs[1].legend()
axs[1].grid()
y_ae = df['AE']
y_ae_cc = df['AE_CC']
axs[2].plot(xs, y_ae, label='AE')
axs[2].plot(xs, y_ae_cc, label='AE-CC')
axs[2].legend()
axs[2].grid()
#plt.pause(1.0)
axs[0].cla()
axs[1].cla()
axs[2].cla()
plt.savefig('./plot.png')
break
#plt.show()