67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
import os
|
|
import sys
|
|
import pandas as pd
|
|
|
|
import quapy as qp
|
|
from quapy.method.aggregative import DistributionMatching
|
|
from method_kdey import KDEy
|
|
from quapy.model_selection import GridSearchQ
|
|
from quapy.protocol import UPP
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
qp.environ['SAMPLE_SIZE'] = 100
|
|
qp.environ['N_JOBS'] = -1
|
|
method = 'KDE'
|
|
param = 0.1
|
|
target = 'max_likelihood'
|
|
div = 'topsoe'
|
|
method_identifier = f'{method}_modsel_{div if target=="min_divergence" else target}'
|
|
|
|
os.makedirs('results', exist_ok=True)
|
|
result_path = f'results/{method_identifier}.csv'
|
|
|
|
#if os.path.exists(result_path):
|
|
# print('Result already exit. Nothing to do')
|
|
# sys.exit(0)
|
|
|
|
with open(result_path, 'wt') as csv:
|
|
csv.write(f'Method\tDataset\tMAE\tMRAE\n')
|
|
|
|
for dataset in qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST:
|
|
print('init', dataset)
|
|
|
|
data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=True)
|
|
|
|
if method == 'KDE':
|
|
param_grid = {'bandwidth': np.linspace(0.001, 0.2, 21)}
|
|
model = KDEy(LogisticRegression(), divergence=div, bandwidth=param, engine='sklearn', target=target)
|
|
else:
|
|
raise NotImplementedError('unknown method')
|
|
|
|
protocol = UPP(data.test, repeats=100)
|
|
modsel = GridSearchQ(model, param_grid, protocol, refit=False, n_jobs=-1, verbose=1)
|
|
|
|
modsel.fit(data.training)
|
|
print(f'best params {modsel.best_params_}')
|
|
|
|
quantifier = modsel.best_model()
|
|
|
|
data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=False)
|
|
quantifier.fit(data.training)
|
|
protocol = UPP(data.test, repeats=100)
|
|
report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True)
|
|
means = report.mean()
|
|
csv.write(f'{method_identifier}\t{data.name}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')
|
|
csv.flush()
|
|
|
|
df = pd.read_csv(result_path, sep='\t')
|
|
|
|
pd.set_option('display.max_columns', None)
|
|
pd.set_option('display.max_rows', None)
|
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
|
|
print(pv)
|