import itertools import multiprocessing from joblib import Parallel, delayed import contextlib import numpy as np def get_parallel_slices(n_tasks, n_jobs=-1): if n_jobs == -1: n_jobs = multiprocessing.cpu_count() batch = int(n_tasks / n_jobs) remainder = n_tasks % n_jobs return [slice(job * batch, (job + 1) * batch + (remainder if job == n_jobs - 1 else 0)) for job in range(n_jobs)] def parallelize(func, args, n_jobs): args = np.asarray(args) slices = get_parallel_slices(len(args), n_jobs) results = Parallel(n_jobs=n_jobs)( delayed(func)(args[slice_i]) for slice_i in slices ) return list(itertools.chain.from_iterable(results)) @contextlib.contextmanager def temp_seed(seed): state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)