import numpy import pytest from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import quapy as qp datasets = [qp.datasets.fetch_twitter('semeval16')] aggregative_methods = [qp.method.aggregative.CC, qp.method.aggregative.ACC, qp.method.aggregative.ELM] learners = [LogisticRegression, MultinomialNB, LinearSVC] @pytest.mark.parametrize('dataset', datasets) @pytest.mark.parametrize('aggregative_method', aggregative_methods) @pytest.mark.parametrize('learner', learners) def test_aggregative_methods(dataset, aggregative_method, learner): model = aggregative_method(learner()) model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64