from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import quapy as qp import quapy.functional as F SAMPLE_SIZE=500 binary = False svmperf_home = './svm_perf_quantification' if binary: # load a textual binary dataset and create a tfidf bag of words train_path = './datasets/reviews/kindle/train.txt' test_path = './datasets/reviews/kindle/test.txt' dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_text) qp.preprocessing.text2tfidf(dataset, inplace=True) qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True) else: # load a sparse matrix ternary dataset train_path = './datasets/twitter/train/sst.train+dev.feature.txt' test_path = './datasets/twitter/test/sst.test.feature.txt' dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_sparse) dataset.training = dataset.training.sampling(SAMPLE_SIZE, 0.2, 0.5, 0.3) qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True) print(dataset.training.instances.shape) print('dataset loaded') # training a quantifier learner = LogisticRegression() # model = qp.method.aggregative.ClassifyAndCount(learner) # model = qp.method.aggregative.AdjustedClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner) # model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner) # model = qp.method.aggregative.ExplicitLossMinimisationBinary(svmperf_home, loss='q', C=100) model = qp.method.aggregative.SVMQ(svmperf_home, C=1) if not binary: model = qp.method.aggregative.OneVsAll(model) print('fitting model') model.fit(dataset.training) # estimating class prevalences print('quantifying') prevalences_estim = model.quantify(dataset.test.instances) prevalences_true = dataset.test.prevalence() # evaluation (one single prediction) error = qp.error.mae(prevalences_true, prevalences_estim) print(f'method {model.__class__.__name__}') print(f'Evaluation in test (1 eval)') print(f'true prevalence {F.strprev(prevalences_true)}') print(f'estim prevalence {F.strprev(prevalences_estim)}') print(f'mae={error:.3f}') max_evaluations = 5000 n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes) n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes) print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that ' f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded. ' f'For the {dataset.n_classes} classes this dataset has, this will yield a total of {n_evaluations} evaluations.') true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, SAMPLE_SIZE, n_prevpoints) qp.error.SAMPLE_SIZE = SAMPLE_SIZE print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)') for error in qp.error.QUANTIFICATION_ERROR: score = error(true_prev, estim_prev) print(f'{error.__name__}={score:.5f}')