import itertools from functools import cache import numpy as np from densratio import densratio from scipy.sparse import issparse, vstack from scipy.stats import multivariate_normal from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV import quapy as qp from Transduction_office.pykliep import DensityRatioEstimator from quapy.protocol import AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol from quapy.data import LabelledCollection from quapy.method.aggregative import * import quapy.functional as F from time import time def gaussian(mean, cov=1., label=0, size=100, random_state=0): """ Creates a label collection in which the instances are distributed according to a Gaussian with specified parameters and labels all data points with a specific label. :param mean: ndarray of shape (n_dimensions) with the center :param cov: ndarray of shape (n_dimensions, n_dimensions) with the covariance matrix, or a number for np.eye :param label: the class label for the collection :param size: number of instances :param random_state: allows for replicating experiments :return: an instance of LabelledCollection """ mean = np.asarray(mean) assert mean.ndim==1, 'wrong shape for mean' n_features = mean.shape[0] if isinstance(cov, (int, float)): cov = np.eye(n_features) * cov instances = multivariate_normal.rvs(mean, cov, size, random_state=random_state) return LabelledCollection(instances, labels=[label]*size) # ------------------------------------------------------------------------------------ # Protocol for generating prior probability shift + covariate shift by mixing "domains" # ------------------------------------------------------------------------------------ class CovPriorShift(AbstractStochasticSeededProtocol): def __init__(self, domains: list[LabelledCollection], sample_size=None, repeats=100, min_support=0, random_state=0, return_type='sample_prev'): super(CovPriorShift, self).__init__(random_state) self.domains = list(itertools.chain.from_iterable(lc.separate() for lc in domains)) self.sample_size = qp._get_sample_size(sample_size) self.repeats = repeats self.min_support = min_support self.collator = OnLabelledCollectionProtocol.get_collator(return_type) def samples_parameters(self): """ Return all the necessary parameters to replicate the samples as according to the UPP protocol. :return: a list of indexes that realize the UPP sampling """ indexes = [] tentatives = 0 while len(indexes) < self.repeats: alpha = F.uniform_simplex_sampling(n_classes=len(self.domains)) # sizes = np.asarray([round(len(lc_i) * alpha_i) for lc_i, alpha_i in zip(self.domains, alpha)]) sizes = (alpha * self.sample_size).astype(int) if all(sizes > self.min_support): indexes_i = [lc.sampling_index(size) for lc, size in zip(self.domains, sizes)] indexes.append(indexes_i) tentatives = 0 else: tentatives += 1 if tentatives > 100: raise ValueError('the support is too strict, and it is difficult ' 'or impossible to generate valid samples') return indexes def sample(self, params): indexes = params lcs = [lc.sampling_from_index(index) for index, lc in zip(indexes, self.domains)] return LabelledCollection.join(*lcs) def total(self): """ Returns the number of samples that will be generated :return: int """ return self.repeats # --------------------------------------------------------------------------------------- # Methods of "importance weight", e.g., by ratio density estimation (KLIEP, SILF, LogReg) # --------------------------------------------------------------------------------------- class ImportanceWeight: @abstractmethod def weights(self, Xtr, ytr, Xte): pass class KLIEP(ImportanceWeight): def __init__(self): pass def weights(self, Xtr, ytr, Xte): kliep = DensityRatioEstimator() kliep.fit(Xtr, Xte) return kliep.predict(Xtr) class USILF(ImportanceWeight): def __init__(self, alpha=0.): self.alpha = alpha def weights(self, Xtr, ytr, Xte): dense_ratio_obj = densratio(Xtr, Xte, alpha=self.alpha, verbose=False) return dense_ratio_obj.compute_density_ratio(Xtr) class LogReg(ImportanceWeight): def __init__(self): pass def weights(self, Xtr, ytr, Xte): # check "Direct Density Ratio Estimation for # Large-scale Covariate Shift Adaptation", Eq.28 if issparse(Xtr): X = vstack([Xtr, Xte]) else: X = np.concatenate([Xtr, Xte]) y = [0]*len(Xtr) + [1]*len(Xte) logreg = GridSearchCV( LogisticRegression(), param_grid={'C':np.logspace(-3,3,7), 'class_weight': ['balanced', None]}, n_jobs=-1 ) logreg.fit(X, y) prob_train = logreg.predict_proba(Xtr)[:,0] prob_test = logreg.predict_proba(Xtr)[:,1] prior_train = len(Xtr) prior_test = len(Xte) w = (prior_train/prior_test)*(prob_test/prob_train) return w class MostTest(ImportanceWeight): def __init__(self): pass def weights(self, Xtr, ytr, Xte): # check "Direct Density Ratio Estimation for # Large-scale Covariate Shift Adaptation", Eq.28 if issparse(Xtr): X = vstack([Xtr, Xte]) else: X = np.concatenate([Xtr, Xte]) y = [0]*len(Xtr) + [1]*len(Xte) logreg = GridSearchCV( LogisticRegression(), param_grid={'C':np.logspace(-3,3,7), 'class_weight': ['balanced', None]}, n_jobs=-1 ) # logreg = LogisticRegression() # logreg.fit(X, y) # prob_test = logreg.predict_proba(Xtr)[:,1] prob_test = cross_val_predict(logreg, X, y, n_jobs=-1, method="predict_proba")[:len(Xtr),1] return prob_test class Random(ImportanceWeight): def __init__(self): pass def weights(self, Xtr, ytr, Xte): return np.random.rand(len(Xtr)) # -------------------------------------------------------------------------------------------- # Quantification Methods that rely on Importance Weight for reweighting the training instances # -------------------------------------------------------------------------------------------- class TransductiveQuantifier(BaseQuantifier): def fit(self, data: LabelledCollection): self.training_ = data return self @property def training(self): return self.training_ class ReweightingAggregative(TransductiveQuantifier): def __init__(self, classifier, weighter: ImportanceWeight, quantif_method=CC): self.classifier = classifier self.weighter = weighter self.quantif_method = quantif_method def quantify(self, instances): # time_weight = 2.95340 time_train = 0.00619 w = self.weighter.weights(*self.training.Xy, instances) self.classifier.fit(*self.training.Xy, sample_weight=w) quantifier = self.quantif_method(self.classifier).fit(self.training, fit_classifier=False) return quantifier.quantify(instances) # -------------------------------------------------------------------------------------------- # Quantification Methods that rely on Importance Weight for selecting a validation partition # -------------------------------------------------------------------------------------------- def select_from_weights(w, data: LabelledCollection, val_prop=0.4): # w[w<1]=0 order = np.argsort(w) split_point = int(len(w)*val_prop) train_idx, val_idx = order[:-split_point], order[-split_point:] return data.sampling_from_index(train_idx), data.sampling_from_index(val_idx) class SelectorQuantifiers(TransductiveQuantifier): def __init__(self, classifier, weighter: ImportanceWeight, quantif_method=ACC, val_split=0.4): self.classifier = classifier self.weighter = weighter self.quantif_method = quantif_method self.val_split = val_split def quantify(self, instances): w = self.weighter.weights(*self.training.Xy, instances) train, val = select_from_weights(w, self.training, self.val_split) quantifier = self.quantif_method(self.classifier).fit(train, val_split=val) return quantifier.quantify(instances) if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = 500 dA_l0 = gaussian(mean=[0,0], label=0, size=1000) dA_l1 = gaussian(mean=[1,0], label=1, size=1000) dB_l0 = gaussian(mean=[0,1], label=0, size=1000) dB_l1 = gaussian(mean=[1,1], label=1, size=1000) dA = LabelledCollection.join(dA_l0, dA_l1) dB = LabelledCollection.join(dB_l0, dB_l1) dA_train, dA_test = dA.split_stratified(0.5, random_state=0) dB_train, dB_test = dB.split_stratified(0.5, random_state=0) train = LabelledCollection.join(dA_train, dB_train) def lr(): return LogisticRegression() # def lr(): # return GridSearchCV( # LogisticRegression(), # param_grid={'C':np.logspace(-3,3,7), 'class_weight': ['balanced', None]}, # n_jobs=-1 # ) methods = [ ('CC', CC(lr())), ('PCC', PCC(lr())), ('ACC', ACC(lr())), ('PACC', PACC(lr())), ('HDy', EMQ(lr())), ('EMQ', EMQ(lr())), ('Sel-ACC', SelectorQuantifiers(lr(), MostTest(), ACC)), ('Sel-PACC', SelectorQuantifiers(lr(), MostTest(), PACC)), ('Sel-HDy', SelectorQuantifiers(lr(), MostTest(), HDy)), ('LogReg-CC', ReweightingAggregative(lr(), LogReg(), CC)), ('LogReg-PCC', ReweightingAggregative(lr(), LogReg(), PCC)), ('LogReg-EMQ', ReweightingAggregative(lr(), LogReg(), EMQ)), # ('KLIEP-CC', TransductiveAggregative(lr(), KLIEP(), CC)), # ('KLIEP-PCC', TransductiveAggregative(lr(), KLIEP(), PCC)), # ('KLIEP-EMQ', TransductiveAggregative(lr(), KLIEP(), EMQ)), # ('SILF-CC', TransductiveAggregative(lr(), USILF(), CC)), # ('SILF-PCC', TransductiveAggregative(lr(), USILF(), PCC)), # ('SILF-EMQ', TransductiveAggregative(lr(), USILF(), EMQ)) ] for name, model in methods: with qp.util.temp_seed(1): model.fit(train) prot = CovPriorShift([dA_test, dB_test], repeats=10) mae = qp.evaluation.evaluate(model, protocol=prot, error_metric='mae') print(f'{name}: {mae = :.4f}') # mrae = qp.evaluation.evaluate(model, protocol=prot, error_metric='mrae') # print(f'{name}: {mrae = :.4f}')