Dataset: mnist Model: basiccnn Number of classes: 10 Train samples: 42000 Validation samples: 18000 Test samples: 10000 Validation accuracy: 0.9895 Test accuracy: 0.9901 Github repository: .... Data Loading Instructions: The extracted features, predictions, targets, and logits are saved in .npz files. To load the data in Python: import numpy as np # Load training data train_data = np.load('mnist_basiccnn_train_out.npz') train_features = train_data['features'] train_predictions = train_data['predictions'] train_targets = train_data['targets'] train_logits = train_data['logits'] # Load validation data val_data = np.load('mnist_basiccnn_val_out.npz') val_features = val_data['features'] val_predictions = val_data['predictions'] val_targets = val_data['targets'] val_logits = val_data['logits'] # Load test data test_data = np.load('mnist_basiccnn_test_out.npz') test_features = test_data['features'] test_predictions = test_data['predictions'] test_targets = test_data['targets'] test_logits = test_data['logits'] Note: features are the output of the feature extractor (before the final classification layer), predictions are softmax probabilities, targets are the true labels, and logits are the raw model outputs.