from build.lib.quapy.data import LabelledCollection from quapy.method.confidence import WithConfidenceABC from quapy.protocol import AbstractProtocol import numpy as np from tqdm import tqdm import quapy as qp from joblib import Parallel, delayed import copy def temp_calibration(method:WithConfidenceABC, train:LabelledCollection, val_prot:AbstractProtocol, temp_grid=[.5, 1., 1.5, 2., 5., 10., 100.], nominal_coverage=0.95, amplitude_threshold='auto', n_jobs=1, verbose=True): assert (amplitude_threshold == 'auto' or (isinstance(amplitude_threshold, float)) and amplitude_threshold < 1.), \ f'wrong value for {amplitude_threshold=}, it must either be "auto" or a float < 1.0.' if amplitude_threshold=='auto': n_classes = train.n_classes amplitude_threshold = .1/np.log(n_classes+1) if isinstance(amplitude_threshold, float) and amplitude_threshold > 0.1: print(f'warning: the {amplitude_threshold=} is too large; this may lead to uninformative regions') def evaluate_temperature_job(job_id, temp): if verbose: print(f'\tstarting exploration with temperature={temp}...') local_method = copy.deepcopy(method) local_method.temperature = temp coverage = 0 amplitudes = [] # errs = [] pbar = tqdm(enumerate(val_prot()), position=job_id, total=val_prot.total(), disable=not verbose) for i, (sample, prev) in pbar: point_estim, conf_region = local_method.predict_conf(sample) if prev in conf_region: coverage += 1 amplitudes.append(conf_region.montecarlo_proportion(n_trials=50_000)) # errs.append(qp.error.mae(prev, point_estim)) pbar.set_description(f'job={job_id} T={temp}: coverage={coverage/(i+1)*100:.2f}% amplitude={np.mean(amplitudes)*100:.2f}%') mean_coverage = coverage / val_prot.total() mean_amplitude = np.mean(amplitudes) if verbose: print(f'Temperature={temp} got coverage={mean_coverage*100:.2f}% amplitude={mean_amplitude*100:.2f}%') return temp, mean_coverage, mean_amplitude temp_grid = sorted(temp_grid) method.fit(*train.Xy) raw_results = Parallel(n_jobs=n_jobs, backend="loky")( delayed(evaluate_temperature_job)(job_id, temp) for job_id, temp in tqdm(enumerate(temp_grid), disable=not verbose) ) results = [ (temp, cov, amp) for temp, cov, amp in raw_results if amp < amplitude_threshold ] chosen_temperature = 1. if len(results) > 0: chosen_temperature = min(results, key=lambda x: abs(x[1]-nominal_coverage))[0] print(f'chosen_temperature={chosen_temperature:.2f}') return chosen_temperature