from ClassifierAccuracy.gen_tables import gen_tables from ClassifierAccuracy.util.commons import * from ClassifierAccuracy.util.generators import * from ClassifierAccuracy.util.plotting import plot_diagonal from quapy.protocol import UPP PROBLEM = 'multiclass' ORACLE = False basedir = PROBLEM+('-oracle' if ORACLE else '') if PROBLEM == 'binary': qp.environ['SAMPLE_SIZE'] = 1000 NUM_TEST = 1000 gen_datasets = gen_bin_datasets elif PROBLEM == 'multiclass': qp.environ['SAMPLE_SIZE'] = 250 NUM_TEST = 1000 gen_datasets = gen_multi_datasets elif PROBLEM == 'tweet': qp.environ['SAMPLE_SIZE'] = 100 NUM_TEST = 1000 gen_datasets = gen_tweet_datasets for (cls_name, h), (dataset_name, (L, V, U)) in itertools.product(gen_classifiers(), gen_datasets()): print(f'training {cls_name} in {dataset_name}') h.fit(*L.Xy) # test generation protocol test_prot = UPP(U, repeats=NUM_TEST, return_type='labelled_collection', random_state=0) # compute some stats of the dataset get_dataset_stats(f'dataset_stats/{dataset_name}.json', test_prot, L, V) # precompute the actual accuracy values true_accs = {} for acc_name, acc_fn in gen_acc_measure(): true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()] # instances of ClassifierAccuracyPrediction are bound to the evaluation measure, so they # must be nested in the acc-for for acc_name, acc_fn in gen_acc_measure(): print(f'\tfor measure {acc_name}') for (method_name, method) in gen_CAP(h, acc_fn, with_oracle=ORACLE): result_path = getpath(basedir, cls_name, acc_name, dataset_name, method_name) if os.path.exists(result_path): print(f'\t\t{method_name}-{acc_name} exists, skipping') continue print(f'\t\t{method_name} computing...') method, t_train = fit_method(method, V) estim_accs, t_test_ave = predictionsCAP(method, test_prot, ORACLE) save_json_result(result_path, true_accs[acc_name], estim_accs, t_train, t_test_ave) # instances of CAPContingencyTable instead are generic, and the evaluation measure can # be nested to the predictions to speed up things for (method_name, method) in gen_CAP_cont_table(h): if not any_missing(basedir, cls_name, dataset_name, method_name, acc_measures): print(f'\t\tmethod {method_name} has all results already computed. Skipping.') continue print(f'\t\tmethod {method_name} computing...') method, t_train = fit_method(method, V) estim_accs_dict, t_test_ave = predictionsCAPcont_table(method, test_prot, gen_acc_measure, ORACLE) for acc_name in estim_accs_dict.keys(): result_path = getpath(basedir, cls_name, acc_name, dataset_name, method_name) save_json_result(result_path, true_accs[acc_name], estim_accs_dict[acc_name], t_train, t_test_ave) print() # generate diagonal plots print('generating plots') for (cls_name, _), (acc_name, _) in itertools.product(gen_classifiers(), gen_acc_measure()): plot_diagonal(basedir, cls_name, acc_name) for dataset_name, _ in gen_datasets(only_names=True): plot_diagonal(basedir, cls_name, acc_name, dataset_name=dataset_name) print('generating tables') gen_tables(basedir, datasets=[d for d,_ in gen_datasets(only_names=True)])