import quapy as qp import numpy as np import sklearn # def load_binary_raw_document(path): # documents, labels = qp.data.from_text(path, verbose=0, class2int=True) # labels = np.asarray(labels) # labels[np.logical_or(labels == 1, labels == 2)] = 0 # labels[np.logical_or(labels == 4, labels == 5)] = 1 # return documents, labels def load_multiclass_raw_document(path): return qp.data.from_text(path, verbose=0, class2int=False) def load_binary_vectors(path, nF=None): return sklearn.datasets.load_svmlight_file(path, n_features=nF) if __name__ == '__main__': X, y = load_binary_vectors('./data/T1A/public/training_vectors.txt') print(X.shape) print(y)