import numpy as np from sklearn.linear_model import LogisticRegression import os import pandas as pd import quapy as qp from method_kdey import KDEy SEED=1 def task(bandwidth): print('job-init', dataset, bandwidth) train, val_gen, test_gen = qp.datasets.fetch_lequa2022(dataset) with qp.util.temp_seed(SEED): quantifier = KDEy(LogisticRegression(), target='max_likelihood', val_split=10, bandwidth=bandwidth) quantifier.fit(train) report = qp.evaluation.evaluation_report( quantifier, protocol=test_gen, error_metrics=['mae', 'mrae', 'kld'], verbose=True) return report if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = qp.datasets.LEQUA2022_SAMPLE_SIZE['T1B'] qp.environ['N_JOBS'] = -1 result_dir = f'results_lequa_sensibility' os.makedirs(result_dir, exist_ok=True) method = 'KDEy-MLE' global_result_path = f'{result_dir}/{method}' if not os.path.exists(global_result_path+'.csv'): with open(global_result_path+'.csv', 'wt') as csv: csv.write(f'Method\tDataset\tBandwidth\tMAE\tMRAE\tKLD\n') dataset = 'T1B' bandwidths = np.linspace(0.01, 0.2, 20) reports = qp.util.parallel(task, bandwidths, n_jobs=-1) with open(global_result_path + '.csv', 'at') as csv: for bandwidth, report in zip(bandwidths, reports): means = report.mean() local_result_path = global_result_path + '_' + dataset + f'_{bandwidth:.3f}' report.to_csv(f'{local_result_path}.dataframe') csv.write(f'{method}\tLeQua-T1B\t{bandwidth}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n') csv.flush() df = pd.read_csv(global_result_path + '.csv', sep='\t') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"]) print(pv)