from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV, cross_val_predict from sklearn.base import clone import quapy as qp from Retrieval.commons import * from Retrieval.methods import * from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML from quapy.data.base import LabelledCollection from os.path import join from tqdm import tqdm from result_table.src.table import Table """ In this sixth experiment, we have a collection C of >6M documents. We split C in two equally-sized pools TrPool, TePool I have randomly split the collection in 50% train and 50% split. In each split we have approx. 3.25 million documents. We have 5 categories we can evaluate over: Continent, Years_Category, Num_Site_Links, Relative Pageviews and Gender. From the training set I have created smaller subsets for each category: 100K, 500K, 1M and FULL (3.25M) For each category and subset, I have created a training set called: "classifier_training.json". This is the "base" training set for the classifier. In this set we have 500 documents per group in a category. (For example: Male 500, Female 500, Unknown 500). Let me know if you think we need more. To "bias" the quantifier towards a query, I have executed the queries (97) on the different training sets and retrieved the 200 most relevant documents per group. For example: (Male 200, Female 200, Unknown 200) Sometimes this is infeasible, we should probably discuss this at some point. You can find the results for every query in a file named: "training_Query-[QID]Sample-200SPLIT.json" Test: To evaluate our approach, I have executed the queries on the test split. You can find the results for all 97 queries up till k=1000 in this file. testRanking_Results.json """ def methods(classifier, class_name=None, binarize=False): kde_param = { 'continent': 0.01, 'gender': 0.03, 'years_category':0.03 } yield ('NaiveQuery', Naive()) yield ('CC', ClassifyAndCount(classifier)) yield ('PACC', PACC(classifier, val_split=5, n_jobs=-1)) yield ('KDEy-ML', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=kde_param.get(class_name, 0.01))) if binarize: yield ('M3b', M3rND_ModelB(classifier)) yield ('M3b+', M3rND_ModelB(classifier)) yield ('M3d', M3rND_ModelD(classifier)) yield ('M3d+', M3rND_ModelD(classifier)) def train_classifier_fn(train_path): """ Trains a classifier. To do so, it loads the training set, transforms it into a tfidf representation. The classifier is Logistic Regression, with hyperparameters C (range [0.001, 0.01, ..., 1000]) and class_weight (range {'balanced', None}) optimized via 5FCV. :return: the tfidf-vectorizer and the classifier trained """ texts, labels = load_sample(train_path, class_name=class_name) if BINARIZE: labels = binarize_labels(labels, positive_class=protected_group[class_name]) tfidf = TfidfVectorizer(sublinear_tf=True, min_df=3) Xtr = tfidf.fit_transform(texts) print(f'Xtr shape={Xtr.shape}') print('training classifier...', end='') classifier = LogisticRegression(max_iter=5000) modsel = GridSearchCV( classifier, param_grid={'C': np.logspace(-4, 4, 9), 'class_weight': ['balanced', None]}, n_jobs=-1, cv=5 ) modsel.fit(Xtr, labels) classifier = modsel.best_estimator_ classifier_acc = modsel.best_score_ best_params = modsel.best_params_ print(f'[done] best-params={best_params} got {classifier_acc:.4f} score') print('generating cross-val predictions for M3') predictions = cross_val_predict(clone(classifier), Xtr, labels, cv=10, n_jobs=-1, verbose=10) conf_matrix = confusion_matrix(labels, predictions, labels=classifier.classes_) training = LabelledCollection(Xtr, labels) print('training classes:', training.classes_) print('training prevalence:', training.prevalence()) return tfidf, classifier, conf_matrix def reduceAtK(data: LabelledCollection, k): # if k > len(data): # print(f'[warning] {k=}>{len(data)=}') X, y = data.Xy X = X[:k] y = y[:k] return LabelledCollection(X, y, classes=data.classes_) def benchmark_name(class_name, k=None): scape_class_name = class_name.replace('_', '\_') if k is None: return scape_class_name else: return f'{scape_class_name}@{k}' def run_experiment(): results = { 'mae': {k: [] for k in Ks}, 'mrae': {k: [] for k in Ks}, 'rKL_error': [], 'rND_error': [] } pbar = tqdm(experiment_prot(), total=experiment_prot.total()) for train, test, q_rel_prevs in pbar: Xtr, ytr, score_tr = train Xte, yte, score_te = test train_col = LabelledCollection(Xtr, ytr, classes=classifier.classes_) if not method_name.startswith('Naive') and not method_name.startswith('M3'): method.fit(train_col, val_split=train_col, fit_classifier=False) elif method_name == 'Naive': method.fit(train_col) test_col = LabelledCollection(Xte, yte, classes=classifier.classes_) rKL_estim, rKL_true = [], [] rND_estim, rND_true = [], [] for k in Ks: test_k = reduceAtK(test_col, k) if method_name == 'NaiveQuery': train_k = reduceAtK(train_col, k) method.fit(train_k) estim_prev = method.quantify(test_k.instances) # epsilon value for prevalence smoothing eps=(1. / (2. * k)) # error metrics test_k_prev = test_k.prevalence() mae = qp.error.mae(test_k_prev, estim_prev) mrae = qp.error.mrae(test_k_prev, estim_prev, eps=eps) rKL_at_k_estim = qp.error.kld(estim_prev, q_rel_prevs, eps=eps) rKL_at_k_true = qp.error.kld(test_k_prev, q_rel_prevs, eps=eps) if BINARIZE: # [1] is the index of the minority or historically disadvantaged group rND_at_k_estim = np.abs(estim_prev[1] - q_rel_prevs[1]) rND_at_k_true = np.abs(test_k_prev[1] - q_rel_prevs[1]) # collect results results['mae'][k].append(mae) results['mrae'][k].append(mrae) rKL_estim.append(rKL_at_k_estim) rKL_true.append(rKL_at_k_true) if BINARIZE: rND_estim.append(rND_at_k_estim) rND_true.append(rND_at_k_true) # aggregate fairness metrics def aggregate(rMs, Ks, Z=1): return (1 / Z) * sum((1. / np.log2(k)) * v for v, k in zip(rMs, Ks)) Z = sum((1. / np.log2(k)) for k in Ks) rKL_estim = aggregate(rKL_estim, Ks, Z) rKL_true = aggregate(rKL_true, Ks, Z) rKL_error = np.abs(rKL_true-rKL_estim) results['rKL_error'].append(rKL_error) if BINARIZE: rND_estim = aggregate(rND_estim, Ks, Z) rND_true = aggregate(rND_true, Ks, Z) if isinstance(method, AbstractM3rND): if method_name.endswith('+'): # learns the correction parameters from the query-specific training data conf_matrix_ = method.get_confusion_matrix(*train_col.Xy) else: # learns the correction parameters from the training data used to train the classifier conf_matrix_ = conf_matrix.copy() rND_estim = method.fair_measure_correction(rND_estim, conf_matrix_) rND_error = np.abs(rND_true - rND_estim) results['rND_error'].append(rND_error) pbar.set_description(f'{method_name}') return results data_home = 'data' if __name__ == '__main__': # final tables only contain the information for the data size 10K, each row is a class name and each colum # the corresponding rND (for binary) or rKL (for multiclass) score tables_RND, tables_DKL = [], [] tables_final = [] for class_mode in ['multiclass', 'binary']: BINARIZE = (class_mode=='binary') method_names = [name for name, *other in methods(None, binarize=BINARIZE)] table_final = Table(name=f'rND' if BINARIZE else f'rKL', benchmarks=[benchmark_name(c) for c in CLASS_NAMES], methods=method_names) table_final.format.mean_macro = False tables_final.append(table_final) for class_name in CLASS_NAMES: tables_mae, tables_mrae = [], [] benchmarks_size =[benchmark_name(class_name, s) for s in DATA_SIZES] table_DKL = Table(name=f'rKL-{class_name}', benchmarks=benchmarks_size, methods=method_names) table_RND = Table(name=f'rND-{class_name}', benchmarks=benchmarks_size, methods=method_names) for data_size in DATA_SIZES: print(class_name, class_mode, data_size) benchmarks_k = [benchmark_name(class_name, k) for k in Ks] # table_mae = Table(name=f'{class_name}-{data_size}-mae', benchmarks=benchmarks_k, methods=method_names) table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks_k, methods=method_names) # tables_mae.append(table_mae) tables_mrae.append(table_mrae) # sets all paths class_home = join(data_home, class_name, data_size) train_data_path = join(data_home, class_name, 'FULL', 'classifier_training.json') # <----- fixed classifier classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}_{class_mode}.pkl') test_rankings_path = join(data_home, 'testRanking_Results.json') test_query_prevs_path = join(data_home, 'prevelance_vectors_judged_docs.json') results_home = join('results', class_name, class_mode, data_size) positive_class = protected_group[class_name] if BINARIZE else None # instantiates the classifier (trains it the first time, loads it in the subsequent executions) tfidf, classifier, conf_matrix \ = qp.util.pickled_resource(classifier_path, train_classifier_fn, train_data_path) experiment_prot = RetrievedSamples( class_home, test_rankings_path, test_query_prevs_path, vectorizer=tfidf, class_name=class_name, positive_class=positive_class, classes=classifier.classes_ ) for method_name, method in methods(classifier, class_name, BINARIZE): results_path = join(results_home, method_name + '.pkl') results = qp.util.pickled_resource(results_path, run_experiment) # compose the tables for k in Ks: # table_mae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mae'][k]) table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k]) table_DKL.add(benchmark=benchmark_name(class_name, data_size), method=method_name, v=results['rKL_error']) if BINARIZE: table_RND.add(benchmark=benchmark_name(class_name, data_size), method=method_name, v=results['rND_error']) if data_size=='10K': value = results['rND_error'] if BINARIZE else results['rKL_error'] table_final.add(benchmark=benchmark_name(class_name), method=method_name, v=value) tables = ([table_RND] + tables_mrae) if BINARIZE else ([table_DKL] + tables_mrae) Table.LatexPDF(f'./latex/{class_mode}/{class_name}.pdf', tables=tables) if BINARIZE: tables_RND.append(table_RND) else: tables_DKL.append(table_DKL) Table.LatexPDF(f'./latex/global/main.pdf', tables=tables_RND+tables_DKL, dedicated_pages=False) Table.LatexPDF(f'./latex/final/main.pdf', tables=tables_final, dedicated_pages=False)