import os.path import pickle from collections import defaultdict from pathlib import Path import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC import quapy as qp from Retrieval.commons import RetrievedSamples, load_sample from Retrieval.experiments import methods, benchmark_name from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML from quapy.data.base import LabelledCollection from os.path import join from tqdm import tqdm from result_table.src.table import Table import matplotlib.pyplot as plt data_home = 'data' class_mode = 'multiclass' method_names = [name for name, *other in methods(None, 'continent')] # Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000] Ks = [50, 100, 500, 1000] DATA_SIZE = ['10K', '50K', '100K', '500K', '1M', 'FULL'] CLASS_NAME = ['gender', 'continent', 'years_category'] all_results = {} # loads all MRAE results, and returns a dictionary containing the values, which is indexed by: # class_name -> data_size -> method_name -> k -> stat -> float # where stat is "mean", "std", "max" def load_all_results(): for class_name in CLASS_NAME: all_results[class_name] = {} for data_size in DATA_SIZE: all_results[class_name][data_size] = {} results_home = join('results', class_name, class_mode, data_size) all_results[class_name][data_size] = {} for method_name in method_names: results_path = join(results_home, method_name + '.pkl') try: results = pickle.load(open(results_path, 'rb')) except Exception as e: print(f'missing result {results}', e) all_results[class_name][data_size][method_name] = {} for k in Ks: all_results[class_name][data_size][method_name][k] = {} values = results['mrae'] all_results[class_name][data_size][method_name][k]['mean'] = np.mean(values[k]) all_results[class_name][data_size][method_name][k]['std'] = np.std(values[k]) all_results[class_name][data_size][method_name][k]['max'] = np.max(values[k]) return all_results results = load_all_results() # generates the class-independent, size-independent plots for y-axis=MRAE in which: # - the x-axis displays the Ks for class_name in CLASS_NAME: for data_size in DATA_SIZE: fig, ax = plt.subplots() max_means = [] for method_name in method_names: # class_name -> data_size -> method_name -> k -> stat -> float means = [ results[class_name][data_size][method_name][k]['mean'] for k in Ks ] stds = [ results[class_name][data_size][method_name][k]['std'] for k in Ks ] # max_mean = np.max([ # results[class_name][data_size][method_name][k]['max'] for k in Ks # ]) max_means.append(max(means)) means = np.asarray(means) stds = np.asarray(stds) line = ax.plot(Ks, means, 'o-', label=method_name, color=None) color = line[-1].get_color() # ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color) ax.set_xlabel('k') ax.set_ylabel('RAE') ax.set_title(f'{class_name} from {data_size}') ax.set_ylim([0, max(max_means)*1.05]) ax.legend() os.makedirs(f'plots/var_k/{class_name}', exist_ok=True) plotpath = f'plots/var_k/{class_name}/{data_size}_mrae.pdf' print(f'saving plot in {plotpath}') plt.savefig(plotpath, bbox_inches='tight')