import pickle from collections import defaultdict from joblib import Parallel, delayed from tqdm import tqdm import pandas as pd from glob import glob from pathlib import Path import quapy as qp from quapy.method.confidence import ConfidenceEllipseSimplex, ConfidenceEllipseCLR, ConfidenceEllipseILR pd.set_option('display.max_columns', None) pd.set_option('display.width', 2000) pd.set_option('display.max_rows', None) pd.set_option("display.expand_frame_repr", False) pd.set_option("display.precision", 4) pd.set_option("display.float_format", "{:.4f}".format) def compute_coverage_amplitude(region_constructor): all_samples = results['samples'] all_true_prevs = results['true-prevs'] def process_one(samples, true_prevs): ellipse = region_constructor(samples) return ellipse.coverage(true_prevs), ellipse.montecarlo_proportion() out = Parallel(n_jobs=3)( delayed(process_one)(samples, true_prevs) for samples, true_prevs in tqdm( zip(all_samples, all_true_prevs), total=len(all_samples), desc='constructing ellipses' ) ) # unzip results coverage, amplitude = zip(*out) return list(coverage), list(amplitude) def update_pickle(report, pickle_path, updated_dict:dict): for k,v in updated_dict.items(): report[k]=v pickle.dump(report, open(pickle_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL) def update_pickle_with_region(report, file, conf_name, conf_region_class): if f'coverage-{conf_name}' not in report: cov, amp = compute_coverage_amplitude(conf_region_class) update_fields = { f'coverage-{conf_name}': cov, f'amplitude-{conf_name}': amp, } update_pickle(report, file, update_fields) for setup in ['binary', 'multiclass']: path = f'./results/{setup}/*.pkl' table = defaultdict(list) for file in tqdm(glob(path), desc='processing results', total=len(glob(path))): file = Path(file) dataset, method = file.name.replace('.pkl', '').split('__') report = pickle.load(open(file, 'rb')) results = report['results'] n_samples = len(results['ae']) table['method'].extend([method.replace('Bayesian','Ba').replace('Bootstrap', 'Bo')] * n_samples) table['dataset'].extend([dataset] * n_samples) table['ae'].extend(results['ae']) table['c-CI'].extend(results['coverage']) table['a-CI'].extend(results['amplitude']) update_pickle_with_region(report, file, conf_name='CE', conf_region_class=ConfidenceEllipseSimplex) update_pickle_with_region(report, file, conf_name='CLR', conf_region_class=ConfidenceEllipseCLR) update_pickle_with_region(report, file, conf_name='ILR', conf_region_class=ConfidenceEllipseILR) table['c-CE'].extend(report['coverage-CE']) table['a-CE'].extend(report['amplitude-CE']) table['c-CLR'].extend(report['coverage-CLR']) table['a-CLR'].extend(report['amplitude-CLR']) table['c-ILR'].extend(report['coverage-ILR']) table['a-ILR'].extend(report['amplitude-ILR']) df = pd.DataFrame(table) n_classes = {} tr_size = {} for dataset in df['dataset'].unique(): fetch_fn = { 'binary': qp.datasets.fetch_UCIBinaryDataset, 'multiclass': qp.datasets.fetch_UCIMulticlassDataset }[setup] data = fetch_fn(dataset) n_classes[dataset] = data.n_classes tr_size[dataset] = len(data.training) # remove datasets with more than max_classes classes max_classes = 30 for data_name, n in n_classes.items(): if n > max_classes: df = df[df["dataset"] != data_name] for region in ['CI', 'CE', 'CLR', 'ILR']: if setup == 'binary' and region=='ILR': continue pv = pd.pivot_table( df, index='dataset', columns='method', values=['ae', f'c-{region}', f'a-{region}'], margins=True ) pv['n_classes'] = pv.index.map(n_classes).astype('Int64') pv['tr_size'] = pv.index.map(tr_size).astype('Int64') pv = pv.drop(columns=[col for col in pv.columns if col[-1] == "All"]) print(f'{setup=}') print(pv) print('-'*80)