<!DOCTYPE html> <html class="writer-html5" lang="en" data-content_root="../../../"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>quapy.classification.methods — QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="../../../_static/css/theme.css?v=19f00094" /> <!--[if lt IE 9]> <script src="../../../_static/js/html5shiv.min.js"></script> <![endif]--> <script src="../../../_static/jquery.js?v=5d32c60e"></script> <script src="../../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="../../../_static/documentation_options.js?v=22607128"></script> <script src="../../../_static/doctools.js?v=9a2dae69"></script> <script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script> <script src="../../../_static/js/theme.js"></script> <link rel="index" title="Index" href="../../../genindex.html" /> <link rel="search" title="Search" href="../../../search.html" /> </head> <body class="wy-body-for-nav"> <div class="wy-grid-for-nav"> <nav data-toggle="wy-nav-shift" class="wy-nav-side"> <div class="wy-side-scroll"> <div class="wy-side-nav-search" > <a href="../../../index.html" class="icon icon-home"> QuaPy: A Python-based open-source framework for quantification </a> <div role="search"> <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get"> <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu"> <ul> <li class="toctree-l1"><a class="reference internal" href="../../../modules.html">quapy</a></li> </ul> </div> </div> </nav> <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" > <i data-toggle="wy-nav-top" class="fa fa-bars"></i> <a href="../../../index.html">QuaPy: A Python-based open-source framework for quantification</a> </nav> <div class="wy-nav-content"> <div class="rst-content"> <div role="navigation" aria-label="Page navigation"> <ul class="wy-breadcrumbs"> <li><a href="../../../index.html" class="icon icon-home" aria-label="Home"></a></li> <li class="breadcrumb-item"><a href="../../index.html">Module code</a></li> <li class="breadcrumb-item active">quapy.classification.methods</li> <li class="wy-breadcrumbs-aside"> </li> </ul> <hr/> </div> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <h1>Source code for quapy.classification.methods</h1><div class="highlight"><pre> <span></span><span class="kn">from</span> <span class="nn">sklearn.base</span> <span class="kn">import</span> <span class="n">BaseEstimator</span> <span class="kn">from</span> <span class="nn">sklearn.decomposition</span> <span class="kn">import</span> <span class="n">TruncatedSVD</span> <span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span> <div class="viewcode-block" id="LowRankLogisticRegression"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression">[docs]</a> <span class="k">class</span> <span class="nc">LowRankLogisticRegression</span><span class="p">(</span><span class="n">BaseEstimator</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> An example of a classification method (i.e., an object that implements `fit`, `predict`, and `predict_proba`)</span> <span class="sd"> that also generates embedded inputs (i.e., that implements `transform`), as those required for</span> <span class="sd"> :class:`quapy.method.neural.QuaNet`. This is a mock method to allow for easily instantiating</span> <span class="sd"> :class:`quapy.method.neural.QuaNet` on array-like real-valued instances.</span> <span class="sd"> The transformation consists of applying :class:`sklearn.decomposition.TruncatedSVD`</span> <span class="sd"> while classification is performed using :class:`sklearn.linear_model.LogisticRegression` on the low-rank space.</span> <span class="sd"> :param n_components: the number of principal components to retain</span> <span class="sd"> :param kwargs: parameters for the</span> <span class="sd"> `Logistic Regression <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`__ classifier</span> <span class="sd"> """</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_components</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span> <span class="o">=</span> <span class="n">n_components</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <div class="viewcode-block" id="LowRankLogisticRegression.get_params"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.get_params">[docs]</a> <span class="k">def</span> <span class="nf">get_params</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Get hyper-parameters for this estimator.</span> <span class="sd"> :return: a dictionary with parameter names mapped to their values</span> <span class="sd"> """</span> <span class="n">params</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'n_components'</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">}</span> <span class="n">params</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">get_params</span><span class="p">())</span> <span class="k">return</span> <span class="n">params</span></div> <div class="viewcode-block" id="LowRankLogisticRegression.set_params"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.set_params">[docs]</a> <span class="k">def</span> <span class="nf">set_params</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">params</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Set the parameters of this estimator.</span> <span class="sd"> :param parameters: a `**kwargs` dictionary with the estimator parameters for</span> <span class="sd"> `Logistic Regression <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`__</span> <span class="sd"> and eventually also `n_components` for `TruncatedSVD`</span> <span class="sd"> """</span> <span class="n">params_</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">params</span><span class="p">)</span> <span class="k">if</span> <span class="s1">'n_components'</span> <span class="ow">in</span> <span class="n">params_</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span> <span class="o">=</span> <span class="n">params_</span><span class="p">[</span><span class="s1">'n_components'</span><span class="p">]</span> <span class="k">del</span> <span class="n">params_</span><span class="p">[</span><span class="s1">'n_components'</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">set_params</span><span class="p">(</span><span class="o">**</span><span class="n">params_</span><span class="p">)</span></div> <div class="viewcode-block" id="LowRankLogisticRegression.fit"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.fit">[docs]</a> <span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Fit the model according to the given training data. The fit consists of</span> <span class="sd"> fitting `TruncatedSVD` and then `LogisticRegression` on the low-rank representation.</span> <span class="sd"> :param X: array-like of shape `(n_samples, n_features)` with the instances</span> <span class="sd"> :param y: array-like of shape `(n_samples, n_classes)` with the class labels</span> <span class="sd"> :return: `self`</span> <span class="sd"> """</span> <span class="n">nF</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">nF</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="o">=</span> <span class="n">TruncatedSVD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">classes_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">classes_</span> <span class="k">return</span> <span class="bp">self</span></div> <div class="viewcode-block" id="LowRankLogisticRegression.predict"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Predicts labels for the instances `X` embedded into the low-rank space.</span> <span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to classify</span> <span class="sd"> :return: a `numpy` array of length `n` containing the label predictions, where `n` is the number of</span> <span class="sd"> instances in `X`</span> <span class="sd"> """</span> <span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div> <div class="viewcode-block" id="LowRankLogisticRegression.predict_proba"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict_proba">[docs]</a> <span class="k">def</span> <span class="nf">predict_proba</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Predicts posterior probabilities for the instances `X` embedded into the low-rank space.</span> <span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to classify</span> <span class="sd"> :return: array-like of shape `(n_samples, n_classes)` with the posterior probabilities</span> <span class="sd"> """</span> <span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div> <div class="viewcode-block" id="LowRankLogisticRegression.transform"> <a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform">[docs]</a> <span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""</span> <span class="sd"> Returns the low-rank approximation of `X` with `n_components` dimensions, or `X` unaltered if</span> <span class="sd"> `n_components` >= `X.shape[1]`.</span> <span class="sd"> </span> <span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to embed</span> <span class="sd"> :return: array-like of shape `(n_samples, n_components)` with the embedded instances</span> <span class="sd"> """</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="k">return</span> <span class="n">X</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div> </div> </pre></div> </div> </div> <footer> <hr/> <div role="contentinfo"> <p>© Copyright 2024, Alejandro Moreo.</p> </div> Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script> jQuery(function () { SphinxRtdTheme.Navigation.enable(true); }); </script> </body> </html>