from typing import Union import numpy as np from sklearn.base import BaseEstimator from sklearn.neighbors import KernelDensity import quapy as qp from quapy.data import LabelledCollection from quapy.method.aggregative import AggregativeProbabilisticQuantifier, cross_generate_predictions import quapy.functional as F from sklearn.metrics.pairwise import rbf_kernel class KDEBase: BANDWIDTH_METHOD = ['scott', 'silverman'] @classmethod def _check_bandwidth(cls, bandwidth): assert bandwidth in KDEBase.BANDWIDTH_METHOD or isinstance(bandwidth, float), \ f'invalid bandwidth, valid ones are {KDEBase.BANDWIDTH_METHOD} or float values' if isinstance(bandwidth, float): assert 0 < bandwidth < 1, "the bandwith for KDEy should be in (0,1), since this method models the unit simplex" def get_kde_function(self, X, bandwidth): return KernelDensity(bandwidth=bandwidth).fit(X) def pdf(self, kde, X): return np.exp(kde.score_samples(X)) def get_mixture_components(self, X, y, n_classes, bandwidth): return [self.get_kde_function(X[y == cat], bandwidth) for cat in range(n_classes)] class KDEyML(AggregativeProbabilisticQuantifier, KDEBase): def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0): self._check_bandwidth(bandwidth) self.classifier = classifier self.val_split = val_split self.bandwidth = bandwidth self.n_jobs = n_jobs self.random_state=random_state def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None): if val_split is None: val_split = self.val_split self.classifier, y, posteriors, _, _ = cross_generate_predictions( data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs ) self.mix_densities = self.get_mixture_components(posteriors, y, data.n_classes, self.bandwidth) return self def aggregate(self, posteriors: np.ndarray): """ Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood of the data (i.e., that minimizes the negative log-likelihood) :param posteriors: instances in the sample converted into posterior probabilities :return: a vector of class prevalence estimates """ np.random.RandomState(self.random_state) epsilon = 1e-10 n_classes = len(self.mix_densities) test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.mix_densities] def neg_loglikelihood(prev): test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities)) test_loglikelihood = np.log(test_mixture_likelihood + epsilon) return -np.sum(test_loglikelihood) return F.optim_minimize(neg_loglikelihood, n_classes) class KDEyHD(AggregativeProbabilisticQuantifier, KDEBase): def __init__(self, classifier: BaseEstimator, val_split=10, divergence: str='HD', bandwidth=0.1, n_jobs=None, random_state=0, montecarlo_trials=10000): self._check_bandwidth(bandwidth) self.classifier = classifier self.val_split = val_split self.divergence = divergence self.bandwidth = bandwidth self.n_jobs = n_jobs self.random_state=random_state self.montecarlo_trials = montecarlo_trials def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None): if val_split is None: val_split = self.val_split self.classifier, y, posteriors, _, _ = cross_generate_predictions( data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs ) self.mix_densities = self.get_mixture_components(posteriors, y, data.n_classes, self.bandwidth) N = self.montecarlo_trials rs = self.random_state n = data.n_classes self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.mix_densities]) self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.mix_densities]) self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities) return self def aggregate(self, posteriors: np.ndarray): # we retain all n*N examples (sampled from a mixture with uniform parameter), and then # apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS n_classes = len(self.mix_densities) test_kde = self.get_kde_function(posteriors, self.bandwidth) test_densities = self.pdf(test_kde, self.reference_samples) def f_squared_hellinger(u): return (np.sqrt(u)-1)**2 # todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway if self.divergence.lower() == 'hd': f = f_squared_hellinger else: raise ValueError('only squared HD is currently implemented') epsilon = 1e-10 qs = test_densities + epsilon rs = self.reference_density + epsilon iw = qs/rs #importance weights p_class = self.reference_classwise_densities + epsilon fracs = p_class/qs def divergence(prev): # ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs ps_div_qs = prev @ fracs return np.mean( f(ps_div_qs) * iw ) return F.optim_minimize(divergence, n_classes) class KDEyCS(AggregativeProbabilisticQuantifier): def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0): KDEBase._check_bandwidth(bandwidth) self.classifier = classifier self.val_split = val_split self.bandwidth = bandwidth self.n_jobs = n_jobs self.random_state=random_state def gram_matrix_mix_sum(self, X, Y=None): # this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y)) # to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are # two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth) h = self.bandwidth variance = 2 * (h**2) nD = X.shape[1] gamma = 1/(2*variance) norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD))) gram = norm_factor * rbf_kernel(X, Y, gamma=gamma) return gram.sum() def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None): if val_split is None: val_split = self.val_split self.classifier, y, posteriors, _, _ = cross_generate_predictions( data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs ) assert all(sorted(np.unique(y)) == np.arange(data.n_classes)), \ 'label name gaps not allowed in current implementation' n = data.n_classes P = posteriors # counts_inv keeps track of the relative weight of each datapoint within its class # (i.e., the weight in its KDE model) counts_inv = 1 / (data.counts()) # tr_tr_sums corresponds to symbol \overline{B} in the paper tr_tr_sums = np.zeros(shape=(n,n), dtype=float) for i in range(n): for j in range(n): if i > j: tr_tr_sums[i,j] = tr_tr_sums[j,i] else: block = self.gram_matrix_mix_sum(P[y == i], P[y == j] if i!=j else None) tr_tr_sums[i, j] = block # keep track of these data structures for the test phase self.Ptr = P self.ytr = y self.tr_tr_sums = tr_tr_sums self.counts_inv = counts_inv return self def aggregate(self, posteriors: np.ndarray): Ptr = self.Ptr Pte = posteriors y = self.ytr tr_tr_sums = self.tr_tr_sums M, nD = Pte.shape Minv = (1/M) # t in the paper n = Ptr.shape[1] # becomes a constant that does not affect the optimization, no need to compute it # partC = 0.5*np.log(self.gram_matrix_mix_sum(Pte) * Kinv * Kinv) # tr_te_sums corresponds to \overline{a}*(1/Li)*(1/M) in the paper (note the constants # are already aggregated to tr_te_sums, so these multiplications are not carried out # at each iteration of the optimization phase) tr_te_sums = np.zeros(shape=n, dtype=float) for i in range(n): tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte) def divergence(alpha): # called \overline{r} in the paper alpha_ratio = alpha * self.counts_inv # recal that tr_te_sums already accounts for the constant terms (1/Li)*(1/M) partA = -np.log((alpha_ratio @ tr_te_sums) * Minv) partB = 0.5 * np.log(alpha_ratio @ tr_tr_sums @ alpha_ratio) return partA + partB #+ partC return F.optim_minimize(divergence, n)