import ternary import math import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.neighbors import KernelDensity import plotly.figure_factory as ff from data import LabelledCollection scale = 100 # con ternary (una lib de matplotlib) salen bien pero no puedo crear contornos, o no se # con plotly salen los contornos bien, pero es un poco un jaleo porque utiliza el navegador... def plot_simplex_(ax, density, title='', fontsize=30, points=None): tax = ternary.TernaryAxesSubplot(ax=ax, scale=scale) tax.heatmapf(density, boundary=True, style="triangular", colorbar=False, cmap='viridis') #cmap='magma') tax.boundary(linewidth=1.0) corner_fontsize = int(5*fontsize//6) tax.right_corner_label("$y=3$", fontsize=corner_fontsize) tax.top_corner_label("$y=2$", fontsize=corner_fontsize) tax.left_corner_label("$y=1$", fontsize=corner_fontsize) if title: tax.set_title(title, loc='center', y=-0.11, fontsize=fontsize) if points is not None: tax.scatter(points*scale, marker='o', color='w', alpha=0.25, zorder=10, s=5*scale) tax.get_axes().axis('off') tax.clear_matplotlib_ticks() return tax from mpl_toolkits.axes_grid1 import make_axes_locatable def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): post_c1 = np.flip(post_c1, axis=1) post_c2 = np.flip(post_c2, axis=1) post_c3 = np.flip(post_c3, axis=1) post_test = np.flip(post_test, axis=1) size_=10 fig = ternary.plt.figure(figsize=(5*size_, 1*size_)) fig.tight_layout() ax1 = fig.add_subplot(1, 4, 1) divider = make_axes_locatable(ax1) ax2 = fig.add_subplot(1, 4, 2) divider = make_axes_locatable(ax2) ax3 = fig.add_subplot(1, 4, 3) divider = make_axes_locatable(ax3) ax4 = fig.add_subplot(1, 4, 4) divider = make_axes_locatable(ax4) kde1 = KernelDensity(bandwidth=bandwidth).fit(post_c1) kde2 = KernelDensity(bandwidth=bandwidth).fit(post_c2) kde3 = KernelDensity(bandwidth=bandwidth).fit(post_c3) #post_c1 = np.concatenate([post_c1, np.eye(3, dtype=float)]) #post_c2 = np.concatenate([post_c2, np.eye(3, dtype=float)]) #post_c3 = np.concatenate([post_c3, np.eye(3, dtype=float)]) #plot_simplex_(ax1, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') #plot_simplex_(ax2, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') #plot_simplex_(ax3, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') def density(kde): def d(p): return np.exp(kde([p])).item() return d plot_simplex_(ax1, density(kde1.score_samples), title='$p_1$') plot_simplex_(ax2, density(kde2.score_samples), title='$p_2$') plot_simplex_(ax3, density(kde3.score_samples), title='$p_3$') #plot_simplex(ax1, post_c1, np.exp(kde1.score_samples(post_c1)), title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') #, savepath='figure/y1.png') #plot_simplex(ax2, post_c2, np.exp(kde2.score_samples(post_c2)), title='$f_2(\mathbf{x})=p(s(\mathbf{x})|y=2)$') #, savepath='figure/y2.png') #plot_simplex(ax3, post_c3, np.exp(kde3.score_samples(post_c3)), title='$f_3(\mathbf{x})=p(s(\mathbf{x})|y=3)$') #, savepath='figure/y3.png') def mixture_(prevs, kdes): def m(p): total_density = 0 for prev, kde in zip(prevs, kdes): log_density = kde.score_samples([p]).item() density = np.exp(log_density) density *= prev total_density += density #print(total_density) return total_density return m title = '$\mathbf{p}_{\mathbf{\\alpha}} = \sum_{i \in n} \\alpha_i p_i$' plot_simplex_(ax4, mixture_(alpha, [kde1, kde2, kde3]), title=title, points=post_test) #ternary.plt.show() ternary.plt.savefig('./simplex.pdf') import quapy as qp data = qp.datasets.fetch_twitter('wb', min_df=3, pickle=True, for_model_selection=False) Xtr, ytr = data.training.Xy Xte, yte = data.test.sampling(150, *[0.5, 0.1, 0.4]).Xy cls = LogisticRegression(C=0.0001, random_state=0) draw_from_training = False if draw_from_training: post_tr = cross_val_predict(cls, Xtr, ytr, n_jobs=-1, method='predict_proba') post_c1 = post_tr[ytr==0] post_c2 = post_tr[ytr==1] post_c3 = post_tr[ytr==2] cls.fit(Xtr, ytr) else: cls.fit(Xtr, ytr) post_te = cls.predict_proba(Xte) post_c1 = post_te[yte == 0] post_c2 = post_te[yte == 1] post_c3 = post_te[yte == 2] post_test = cls.predict_proba(Xte) alpha = qp.functional.prevalence_from_labels(yte, classes=[0, 1, 2]) print(f'test alpha {alpha}') plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth=0.1)