preparing baselines

This commit is contained in:
Alejandro Moreo Fernandez 2024-05-02 09:28:50 +02:00
parent 6c5bd674ea
commit fd1ab667ac
4 changed files with 82 additions and 47 deletions

View File

@ -1,15 +1,20 @@
import zipfile
import pandas as pd
import os
from os.path import join
import quapy as qp
from scripts.data import load_vector_documents
from quapy.data import LabelledCollection
from quapy.protocol import AbstractProtocol
from quapy.util import download_file_if_not_exists
LEQUA2024_TASKS = ['T1', 'T2', 'T3', 'T4']
LEQUA2024_ZENODO = 'https://zenodo.org/record/11091067' # v2, no ground truth for test yet
class LabelledCollectionsFromDir(AbstractProtocol):
@ -25,34 +30,35 @@ class LabelledCollectionsFromDir(AbstractProtocol):
yield lc
def fetch_lequa2024(task, data_home='./data', merge_T3=False):
def fetch_lequa2024(task, data_home=None, merge_T3=False):
from quapy.data._lequa2022 import SamplesFromDir
assert task in LEQUA2024_TASKS, \
f'Unknown task {task}. Valid ones are {LEQUA2024_TASKS}'
# if data_home is None:
# data_home = get_quapy_home()
if data_home is None:
data_home = qp.util.get_quapy_home()
lequa_dir = data_home
# URL_TRAINDEV=f'https://zenodo.org/record/6546188/files/{task}.train_dev.zip'
# URL_TEST=f'https://zenodo.org/record/6546188/files/{task}.test.zip'
# URL_TEST_PREV=f'https://zenodo.org/record/6546188/files/{task}.test_prevalences.zip'
URL_TRAINDEV=f'{LEQUA2024_ZENODO}/files/{task}.train_dev.zip'
URL_TEST=f'{LEQUA2024_ZENODO}/files/{task}.test.zip'
# URL_TEST_PREV=f'{LEQUA2024_ZENODO}/files/{task}.test_prevalences.zip'
# lequa_dir = join(data_home, 'lequa2024')
# os.makedirs(lequa_dir, exist_ok=True)
lequa_dir = join(data_home, 'lequa2024')
os.makedirs(lequa_dir, exist_ok=True)
# def download_unzip_and_remove(unzipped_path, url):
# tmp_path = join(lequa_dir, task + '_tmp.zip')
# download_file_if_not_exists(url, tmp_path)
# with zipfile.ZipFile(tmp_path) as file:
# file.extractall(unzipped_path)
# os.remove(tmp_path)
def download_unzip_and_remove(unzipped_path, url):
tmp_path = join(lequa_dir, task + '_tmp.zip')
download_file_if_not_exists(url, tmp_path)
with zipfile.ZipFile(tmp_path) as file:
file.extractall(unzipped_path)
os.remove(tmp_path)
# if not os.path.exists(join(lequa_dir, task)):
# download_unzip_and_remove(lequa_dir, URL_TRAINDEV)
# download_unzip_and_remove(lequa_dir, URL_TEST)
if not os.path.exists(join(lequa_dir, task)):
download_unzip_and_remove(lequa_dir, URL_TRAINDEV)
download_unzip_and_remove(lequa_dir, URL_TEST)
# download_unzip_and_remove(lequa_dir, URL_TEST_PREV)
load_fn = load_vector_documents

View File

@ -1,11 +1,12 @@
import argparse
import pickle
import os
import sys
from os.path import join
from sklearn.linear_model import LogisticRegression as LR
from scripts.constants import SAMPLE_SIZE
from LeQua2024._lequa2024 import LEQUA2024_TASKS, fetch_lequa2024
from LeQua2024._lequa2024 import LEQUA2024_TASKS, fetch_lequa2024, LEQUA2024_ZENODO
from quapy.method.aggregative import *
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
import quapy.functional as F
@ -18,11 +19,11 @@ BINARY_TASKS = ['T1', 'T4']
def new_cls():
return LR(n_jobs=-1)
return LR(n_jobs=-1, max_iter=3000)
lr_params = {
'C': np.logspace(-3, 3, 7),
'C': np.logspace(-4, 4, 9),
'class_weight': [None, 'balanced']
}
@ -37,19 +38,23 @@ def baselines():
yield CC(new_cls()), "CC", q_params
yield ACC(new_cls()), "ACC", q_params
yield PCC(new_cls()), "PCC", q_params
yield PACC(new_cls()), "PACC", q_params
yield EMQ(CalibratedClassifierCV(new_cls())), "SLD-Platt", wrap_params(wrap_params(lr_params, 'estimator'), 'classifier')
yield EMQ(new_cls()), "SLD", q_params
# yield PCC(new_cls()), "PCC", q_params
# yield PACC(new_cls()), "PACC", q_params
# yield EMQ(CalibratedClassifierCV(new_cls())), "SLD-Platt", wrap_params(wrap_params(lr_params, 'estimator'), 'classifier')
# yield EMQ(new_cls()), "SLD", q_params
# yield EMQ(new_cls()), "SLD-BCTS", {**q_params, 'recalib': ['bcts'], 'val_split': [5]}
yield MLPE(), "MLPE", None
if args.task in BINARY_TASKS:
yield MS2(new_cls()), "MedianSweep2", q_params
# yield MLPE(), "MLPE", None
# if args.task in BINARY_TASKS:
# yield MS2(new_cls()), "MedianSweep2", q_params
def main(args):
models_path = qp.util.create_if_not_exist(join('./models', args.task))
hyperparams_path = qp.util.create_if_not_exist(join('./hyperparams', args.task))
os.makedirs(models_path, exist_ok=True)
os.makedirs(hyperparams_path, exist_ok=True)
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE[args.task]
@ -63,12 +68,15 @@ def main(args):
for quantifier, q_name, param_grid in baselines():
model_path = os.path.join(models_path, q_name + '.pkl')
modelparams_path = os.path.join(hyperparams_path, q_name + '.pkl')
if os.path.exists(model_path):
print(f'a pickle for {q_name} exists already in {model_path}; skipping!')
continue
print(f'starting model fitting for {q_name}')
if param_grid is not None:
quantifier = qp.model_selection.GridSearchQ(
optimizer = qp.model_selection.GridSearchQ(
quantifier,
param_grid,
protocol=gen_val,
@ -77,13 +85,14 @@ def main(args):
verbose=True,
n_jobs=-1
).fit(train)
print(f'{q_name} got MRAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
quantifier = quantifier.best_model()
print(f'{q_name} got MRAE={optimizer.best_score_:.5f} (hyper-params: {optimizer.best_params_})')
quantifier = optimizer.best_model()
else:
quantifier.fit(train)
print(f'saving model in {model_path}')
pickle.dump(quantifier, open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(quantifier.get_params(), open(modelparams_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
@ -92,7 +101,8 @@ if __name__ == '__main__':
parser.add_argument('task', metavar='TASK', type=str, choices=LEQUA2024_TASKS,
help=f'Code of the task; available ones are {LEQUA2024_TASKS}')
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
help='Path of the directory containing LeQua 2024 data', default='./data')
help='Path of the directory containing LeQua 2024 data (default is ./data)',
default='./data')
args = parser.parse_args()
main(args)

View File

@ -21,7 +21,8 @@ def main(args):
# check the number of samples
nsamples = len(glob(os.path.join(args.samples, f'*.txt')))
if nsamples not in {constants.DEV_SAMPLES, constants.TEST_SAMPLES}:
print(f'Warning: The number of samples (.txt) in {args.samples} does neither coincide with the expected number of '
print(f'Warning: The number of samples (.txt) in {args.samples} '
f'does neither coincide with the expected number of '
f'dev samples ({constants.DEV_SAMPLES}) nor with the expected number of '
f'test samples ({constants.TEST_SAMPLES}).')
@ -39,7 +40,7 @@ def main(args):
if __name__=='__main__':
parser = argparse.ArgumentParser(description='LeQua2022 prediction script')
parser = argparse.ArgumentParser(description='LeQua2024 prediction script')
parser.add_argument('model', metavar='MODEL-PATH', type=str,
help='Path of saved model')
parser.add_argument('samples', metavar='SAMPLES-PATH', type=str,

View File

@ -7,29 +7,47 @@ set -x
# T3: ordinal (n=5)
# T4: covariante shift (n=2)
# --------------------------------------------------------------------------------
# DEV
# --------------------------------------------------------------------------------
# preparing the environment: downloads the official LeQua 2024 scripts (only once and for all)
SCRIPTS_URL=https://github.com/HLT-ISTI/LeQua2024_scripts/archive/refs/heads/main.zip
# download and unzip the LeQua 2024 scripts
if [ ! -d "./scripts" ]; then
echo "Downloading $SCRIPTS_URL into ./scripts"
wget -qO scripts.zip "$SCRIPTS_URL"
unzip -q scripts.zip
mv "LeQua2024_scripts-main" "scripts"
rm scripts.zip
echo "[Done]"
else
echo "LeQua 2024 scripts already exists"
fi
mkdir results
for task in T1 T2 T3 T4 ; do
echo "" > results/$task.txt
PYTHONPATH=.:scripts/:.. python3 baselines.py $task data/
SAMPLES=data/$task/public/dev_samples
TRUEPREVS=data/$task/public/dev_prevalences.txt
TEST_SAMPLES=data/lequa2024/$task/public/test_samples
for pickledmodel in models/$task/*.pkl ; do
model=$(basename "$pickledmodel" .pkl)
PREDICTIONS=predictions/$task/$model.txt
PYTHONPATH=.:scripts/:.. python3 predict.py models/$task/$model.pkl $SAMPLES $PREDICTIONS
PYTHONPATH=.:scripts/:.. python3 scripts/evaluate.py $task $TRUEPREVS $PREDICTIONS >> results/$task.txt
PREDICTIONS=predictions/$model/task_"${task: -1}".csv
PYTHONPATH=.:scripts/:.. python3 predict.py models/$task/$model.pkl $TEST_SAMPLES $PREDICTIONS
done
done
echo "generating submission files for codalab in folder ./submission_files"
mkdir -p submission_files
for modelname in predictions/* ; do
modelname=$(basename "$modelname")
submission_name=submission_files/$modelname.zip
rm -f $submission_name
echo "zipping results for $modelname"
zip -j $submission_name predictions/$modelname/task_*.csv
done
echo "[Done]"