diff --git a/quapy/plot.py b/quapy/plot.py index 7b2145f..2e41413 100644 --- a/quapy/plot.py +++ b/quapy/plot.py @@ -4,7 +4,7 @@ from matplotlib.cm import get_cmap import numpy as np from matplotlib import cm from scipy.stats import ttest_ind_from_stats -from matplotlib.ticker import StrMethodFormatter, NullFormatter +from matplotlib.ticker import ScalarFormatter import quapy as qp @@ -270,11 +270,11 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, tr_test_drifts = data[method]['x'] method_drifts = data[method]['y'] if logscale: - #method_drifts=np.log(1+method_drifts) - plt.yscale("log") - ax.yaxis.set_major_formatter(StrMethodFormatter('{x:.2f}')) - ax.yaxis.set_minor_formatter(StrMethodFormatter('{x:.2f}')) - + ax.set_yscale("log") + ax.yaxis.set_major_formatter(ScalarFormatter()) + ax.yaxis.set_minor_formatter(ScalarFormatter()) + ax.yaxis.get_major_formatter().set_scientific(False) + ax.yaxis.get_minor_formatter().set_scientific(False) inds = np.digitize(tr_test_drifts, bins, right=True) @@ -305,8 +305,14 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, ax.fill_between(xs, ys-ystds, ys+ystds, alpha=0.25) if show_density: - ax.bar([ind * binwidth-binwidth/2 for ind in range(len(bins))], + ax2 = ax.twinx() + ax2.bar([ind * binwidth-binwidth/2 for ind in range(len(bins))], max_y*npoints/np.max(npoints), alpha=0.15, color='g', width=binwidth, label='density') + #ax2.set_ylabel("bar data") + ax2.set_ylim(0,1) + ax2.spines['right'].set_color('g') + ax2.tick_params(axis='y', colors='g') + #ax2.yaxis.set_visible(False) ax.set(xlabel=f'Distribution shift between training set and test sample', ylabel=f'{error_name.upper()} (true distribution, predicted distribution)', @@ -321,8 +327,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, ax.set_xlim(min_x, max_x) if show_legend: - ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) - + fig.legend(loc='right') + _save_or_show(savepath)