diff --git a/TODO.txt b/TODO.txt index 02882af..cee90fa 100644 --- a/TODO.txt +++ b/TODO.txt @@ -6,3 +6,6 @@ Add prediction - artificial sampling Add readers for typical datasets used in Quantification Add NAE, NRAE Add "measures for evaluating ordinal"? +Document methods with paper references +The parallel training in svmperf seems not to work + diff --git a/quapy/error.py b/quapy/error.py index f52540f..bd7adf2 100644 --- a/quapy/error.py +++ b/quapy/error.py @@ -2,6 +2,7 @@ from sklearn.metrics import f1_score import numpy as np + SAMPLE_SIZE = None diff --git a/quapy/functional.py b/quapy/functional.py index 48952b2..d235b6b 100644 --- a/quapy/functional.py +++ b/quapy/functional.py @@ -77,6 +77,7 @@ def normalize_prevalence(prevalences): return np.ones_like(prevalences) / prevalences.size + def num_prevalence_combinations(nclasses:int, nprevpoints:int, nrepeats:int): """ Computes the number of prevalence combinations in the nclasses-dimensional simplex if nprevpoints equally distant @@ -118,3 +119,4 @@ def get_nprevpoints_approximation(nclasses, nrepeats, combinations_budget): return nprevpoints-1 else: nprevpoints+=1 + diff --git a/quapy/method/aggregative.py b/quapy/method/aggregative.py index 1423fe6..c2857f7 100644 --- a/quapy/method/aggregative.py +++ b/quapy/method/aggregative.py @@ -337,6 +337,10 @@ class OneVsAll(AggregativeQuantifier): delayed(self._delayed_binary_predict)(c, self.class_method, X) for c in self.classes ) ) +<<<<<<< HEAD +======= + print('one vs all: ', prevalences) +>>>>>>> 2361186a01c53e744f4291e2e2299700216ff139 return F.normalize_prevalence(prevalences) @property diff --git a/quapy/utils/util.py b/quapy/utils/util.py index 8b6f67f..583cb1a 100644 --- a/quapy/utils/util.py +++ b/quapy/utils/util.py @@ -5,6 +5,7 @@ import contextlib import numpy as np + def get_parallel_slices(n_tasks, n_jobs=-1): if n_jobs == -1: n_jobs = multiprocessing.cpu_count() @@ -32,4 +33,3 @@ def temp_seed(seed): finally: np.random.set_state(state) - diff --git a/test.py b/test.py index 679e069..b6cb243 100644 --- a/test.py +++ b/test.py @@ -3,6 +3,7 @@ from sklearn.svm import LinearSVC import quapy as qp import quapy.functional as F + SAMPLE_SIZE=500 binary = False @@ -28,6 +29,7 @@ model = qp.method.aggregative.ClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner) # model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner) + model.fit(dataset.training) # estimating class prevalences @@ -51,3 +53,4 @@ print(f'Evaluation according to the artificial sampling protocol ({len(true_prev for error in qp.error.QUANTIFICATION_ERROR: score = error(true_prev, estim_prev) print(f'{error.__name__}={score:.5f}') +