diff --git a/quapy/method/aggregative.py b/quapy/method/aggregative.py index 4cbe728..ad96e53 100644 --- a/quapy/method/aggregative.py +++ b/quapy/method/aggregative.py @@ -7,6 +7,8 @@ from sklearn.base import BaseEstimator from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict +from typing_extensions import override + import quapy as qp import quapy.functional as F from functional import get_divergence @@ -19,7 +21,7 @@ from quapy.method.base import BaseQuantifier, BinaryQuantifier, OneVsAllGeneric # Abstract classes # ------------------------------------ -class AggregativeQuantifier(ABC, BaseQuantifier): +class AggregativeQuantifier(BaseQuantifier, ABC): """ Abstract class for quantification methods that base their estimations on the aggregation of classification results. Aggregative quantifiers implement a pipeline that consists of generating classification predictions @@ -65,7 +67,8 @@ class AggregativeQuantifier(ABC, BaseQuantifier): """ assert isinstance(fit_classifier, bool), 'unexpected type for "fit_classifier", must be boolean' - self.__check_classifier(adapt_if_necessary=(self.__classifier_method=='predict_proba')) + print(type(self)) + self.__check_classifier(adapt_if_necessary=(self.__classifier_method()=='predict_proba')) if predict_on is None: if fit_classifier: @@ -149,12 +152,12 @@ class AggregativeQuantifier(ABC, BaseQuantifier): """ return self.classifier.predict(instances) - @property def __classifier_method(self): + print('using predict') return 'predict' def __check_classifier(self, adapt_if_necessary=False): - assert hasattr(self.classifier, 'predict') + assert hasattr(self.classifier, self.__classifier_method()) def quantify(self, instances): """ @@ -199,12 +202,12 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier, ABC): def classify(self, instances): return self.classifier.predict_proba(instances) - @property def __classifier_method(self): + print('using predict_proba') return 'predict_proba' def __check_classifier(self, adapt_if_necessary=False): - if not hasattr(self.classifier, 'predict_proba'): + if not hasattr(self.classifier, self.__check_classifier()): if adapt_if_necessary: print(f'warning: The learner {self.classifier.__class__.__name__} does not seem to be ' f'probabilistic. The learner will be calibrated (using CalibratedClassifierCV).')