<li><ahref="quapy.method.html#quapy.method.composable.LeastSquaresLoss">LeastSquaresLoss (class in quapy.method.composable)</a>
</li>
</ul></td>
<tdstyle="width: 33%; vertical-align: top;"><ul>
<li><ahref="quapy.html#quapy.functional.linear_search">linear_search() (in module quapy.functional)</a>
</li>
</ul></td>
<tdstyle="width: 33%; vertical-align: top;"><ul>
<li><ahref="quapy.data.html#quapy.data.base.Dataset.load">load() (quapy.data.base.Dataset class method)</a>
<ul>
<li><ahref="quapy.data.html#quapy.data.base.LabelledCollection.load">(quapy.data.base.LabelledCollection class method)</a>
</li>
</ul></li>
<li><ahref="quapy.html#quapy.util.load_report">load_report() (in module quapy.util)</a>
</li>
<li><ahref="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression">LowRankLogisticRegression (class in quapy.classification.methods)</a>
</li>
<li><ahref="quapy.classification.html#quapy.classification.neural.LSTMnet">LSTMnet (class in quapy.classification.neural)</a>
The scripts for the processing are available at <aclass="reference external"href="https://github.com/pglez82/IFCB_Zenodo">P. González’s repo</a>.
Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.</p>
The dataset already comes with processed features.
The scripts used for the processing are available at <aclass="reference external"href="https://github.com/pglez82/IFCB_Zenodo">P. González’s repo</a>.</p>
<p>The datasets are downloaded only once, and stored for fast reuse.</p>
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.data.datasets.</span></span><spanclass="sig-name descname"><spanclass="pre">fetch_UCIMulticlassDataset</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">dataset_name</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">data_home</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">test_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.3</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">verbose</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><spanclass="sig-return"><spanclass="sig-return-icon">→</span><spanclass="sig-return-typehint"><aclass="reference internal"href="#quapy.data.base.Dataset"title="quapy.data.base.Dataset"><spanclass="pre">Dataset</span></a></span></span><aclass="reference internal"href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassDataset"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.data.datasets.fetch_UCIMulticlassDataset"title="Permalink to this definition"></a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.data.datasets.</span></span><spanclass="sig-name descname"><spanclass="pre">fetch_UCIMulticlassDataset</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">dataset_name</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">data_home</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">min_test_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.3</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">max_train_instances</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">25000</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">min_class_support</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">100</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">verbose</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><spanclass="sig-return"><spanclass="sig-return-icon">→</span><spanclass="sig-return-typehint"><aclass="reference internal"href="#quapy.data.base.Dataset"title="quapy.data.base.Dataset"><spanclass="pre">Dataset</span></a></span></span><aclass="reference internal"href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassDataset"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.data.datasets.fetch_UCIMulticlassDataset"title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI multiclass dataset as an instance of <aclass="reference internal"href="#quapy.data.base.Dataset"title="quapy.data.base.Dataset"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">quapy.data.base.Dataset</span></code></a>.</p>
<p>The list of available datasets is taken from <aclass="reference external"href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances
@ -743,7 +752,13 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<li><p><strong>dataset_name</strong>– a dataset name</p></li>
<li><p><strong>data_home</strong>– specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)</p></li>
<li><p><strong>test_split</strong>– proportion of documents to be included in the test set. The rest conforms the training set</p></li>
<li><p><strong>min_test_split</strong>– minimum proportion of instances to be included in the test set. This value is interpreted
as a minimum proportion, meaning that the real proportion could be higher in case the training proportion
(1-<cite>min_test_split`% of the instances) surpasses `max_train_instances</cite>. In such case, only <cite>max_train_instances</cite>
are taken for training, and the rest (irrespective of <cite>min_test_split</cite>) is taken for test.</p></li>
<li><p><strong>max_train_instances</strong>– maximum number of instances to keep for training (defaults to 25000)</p></li>
<li><p><strong>min_class_support</strong>– minimum number of istances per class. Classes with fewer instances
are discarded (deafult is 100)</p></li>
<li><p><strong>verbose</strong>– set to True (default is False) to get information (stats) about the dataset</p></li>
</ul>
</dd>
@ -755,7 +770,7 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.data.datasets.</span></span><spanclass="sig-name descname"><spanclass="pre">fetch_UCIMulticlassLabelledCollection</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">dataset_name</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">data_home</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">verbose</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><spanclass="sig-return"><spanclass="sig-return-icon">→</span><spanclass="sig-return-typehint"><aclass="reference internal"href="#quapy.data.base.LabelledCollection"title="quapy.data.base.LabelledCollection"><spanclass="pre">LabelledCollection</span></a></span></span><aclass="reference internal"href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassLabelledCollection"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection"title="Permalink to this definition"></a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.data.datasets.</span></span><spanclass="sig-name descname"><spanclass="pre">fetch_UCIMulticlassLabelledCollection</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">dataset_name</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">data_home</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">min_class_support</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">100</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">verbose</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><spanclass="sig-return"><spanclass="sig-return-icon">→</span><spanclass="sig-return-typehint"><aclass="reference internal"href="#quapy.data.base.LabelledCollection"title="quapy.data.base.LabelledCollection"><spanclass="pre">LabelledCollection</span></a></span></span><aclass="reference internal"href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassLabelledCollection"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection"title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI multiclass collection as an instance of <aclass="reference internal"href="#quapy.data.base.LabelledCollection"title="quapy.data.base.LabelledCollection"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">quapy.data.base.LabelledCollection</span></code></a>.</p>
<p>The list of available datasets is taken from <aclass="reference external"href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances
@ -776,7 +791,9 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<li><p><strong>dataset_name</strong>– a dataset name</p></li>
<li><p><strong>data_home</strong>– specify the quapy home directory where the dataset will be dumped (leave empty to use the default
~/quay_data/ directory)</p></li>
<li><p><strong>test_split</strong>– proportion of documents to be included in the test set. The rest conforms the training set</p></li>
<li><p><strong>test_split</strong>– proportion of instances to be included in the test set. The rest conforms the training set</p></li>
<li><p><strong>min_class_support</strong>– minimum number of istances per class. Classes with fewer instances
are discarded (deafult is 100)</p></li>
<li><p><strong>verbose</strong>– set to True (default is False) to get information (stats) about the dataset</p></li>
</ul>
</dd>
@ -798,7 +815,7 @@ We refer to the <a class="reference external" href="https://ceur-ws.org/Vol-3180
A Detailed Overview of LeQua@ CLEF 2022: Learning to Quantify.</a> for a detailed description
on the tasks and datasets.</p>
<p>The datasets are downloaded only once, and stored for fast reuse.</p>
<p>See <cite>lequa2022_experiments.py</cite> provided in the example folder, that can serve as a guide on how to use these
<p>See <cite>4.lequa2022_experiments.py</cite> provided in the example folder, that can serve as a guide on how to use these
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.util.</span></span><spanclass="sig-name descname"><spanclass="pre">load_report</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">path</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">as_dict</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/util.html#load_report"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.util.load_report"title="Permalink to this definition"></a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">quapy.util.</span></span><spanclass="sig-name descname"><spanclass="pre">map_parallel</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">func</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">args</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">n_jobs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/util.html#map_parallel"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.util.map_parallel"title="Permalink to this definition"></a></dt>
<spanid="quapy-method-aggregative-module"></span><h2>quapy.method.aggregative module<aclass="headerlink"href="#module-quapy.method.aggregative"title="Permalink to this heading"></a></h2>
<p><aclass="reference external"href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Adjusted Classify & Count</a>,
the “adjusted” variant of <aclass="reference internal"href="#quapy.method.aggregative.CC"title="quapy.method.aggregative.CC"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">CC</span></code></a>, that corrects the predictions of CC
which is a variant of <aclass="reference internal"href="#quapy.method.aggregative.ACC"title="quapy.method.aggregative.ACC"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">ACC</span></code></a> that calculates the posterior probability distribution
@ -623,7 +632,7 @@ on which the predictions are to be generated.</p></li>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">CC</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#CC"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.CC"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">CC</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#CC"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.CC"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">HDy</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#HDy"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.HDy"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">HDy</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#HDy"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.HDy"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">PCC</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#PCC"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.PCC"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">PCC</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#PCC"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.PCC"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">SMM</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#SMM"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.SMM"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method.aggregative.</span></span><spanclass="sig-name descname"><spanclass="pre">SMM</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/aggregative.html#SMM"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method.aggregative.SMM"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._kdey.</span></span><spanclass="sig-name descname"><spanclass="pre">KDEyCS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">10</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">bandwidth</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.1</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">n_jobs</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_kdey.html#KDEyCS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._kdey.KDEyCS"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._kdey.</span></span><spanclass="sig-name descname"><spanclass="pre">KDEyCS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">bandwidth</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.1</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_kdey.html#KDEyCS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._kdey.KDEyCS"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._kdey.</span></span><spanclass="sig-name descname"><spanclass="pre">KDEyML</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">10</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">bandwidth</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.1</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">n_jobs</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">random_state</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_kdey.html#KDEyML"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._kdey.KDEyML"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._kdey.</span></span><spanclass="sig-name descname"><spanclass="pre">KDEyML</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">bandwidth</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">0.1</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">random_state</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_kdey.html#KDEyML"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._kdey.KDEyML"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MAX</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MAX"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MAX"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MAX</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MAX"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MAX"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MS"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MS"title="Permalink to this definition"></a></dt>
<p>Median Sweep. Threshold Optimization variant for <codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">ACC</span></code> as proposed by
<aclass="reference external"href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
@ -2015,7 +2021,7 @@ This function should return the (float) score to be minimized.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MS2</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MS2"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MS2"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">MS2</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#MS2"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.MS2"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">T50</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#T50"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.T50"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">T50</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#T50"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.T50"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">ThresholdOptimization</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">n_jobs</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#ThresholdOptimization"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.ThresholdOptimization"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">ThresholdOptimization</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">n_jobs</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">None</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#ThresholdOptimization"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.ThresholdOptimization"title="Permalink to this definition"></a></dt>
<p>Abstract class of Threshold Optimization variants for <codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">ACC</span></code> as proposed by
<aclass="reference external"href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
@ -2194,7 +2200,7 @@ This function should return the (float) score to be minimized.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">X</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">BaseEstimator</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#X"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.X"title="Permalink to this definition"></a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">quapy.method._threshold_optim.</span></span><spanclass="sig-name descname"><spanclass="pre">X</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">classifier</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">Optional</span><spanclass="p"><spanclass="pre">[</span></span><spanclass="pre">BaseEstimator</span><spanclass="p"><spanclass="pre">]</span></span></span><spanclass="w"></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="w"></span><spanclass="default_value"><spanclass="pre">None</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">val_split</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">5</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/quapy/method/_threshold_optim.html#X"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#quapy.method._threshold_optim.X"title="Permalink to this definition"></a></dt>