diff --git a/README.md b/README.md index 955cee1..a4747aa 100644 --- a/README.md +++ b/README.md @@ -13,7 +13,7 @@ for facilitating the analysis and interpretation of the experimental results. ### Last updates: -* Version 0.1.9 is released! major changes can be consulted [here](CHANGE_LOG.txt). +* Version 0.2.0 is released! major changes can be consulted [here](CHANGE_LOG.txt). * The developer API documentation is available [here](https://hlt-isti.github.io/QuaPy/build/html/modules.html) ### Installation @@ -46,12 +46,12 @@ of the test set. ```python import quapy as qp -dataset = qp.datasets.fetch_UCIBinaryDataset("yeast") -training, test = dataset.train_test +training, test = qp.datasets.fetch_UCIBinaryDataset("yeast").train_test # create an "Adjusted Classify & Count" quantifier model = qp.method.aggregative.ACC() -model.fit(training) +Xtr, ytr = training.Xy +model.fit(Xtr, ytr) estim_prevalence = model.predict(test.X) true_prevalence = test.prevalence() @@ -79,7 +79,8 @@ quantification methods based on structured output learning, HDy, QuaNet, quantif * 32 UCI Machine Learning datasets. * 11 Twitter quantification-by-sentiment datasets. * 3 product reviews quantification-by-sentiment datasets. - * 4 tasks from LeQua competition (_new in v0.1.7!_) + * 4 tasks from LeQua 2022 competition and 4 tasks from LeQua 2024 competition + * IFCB for Plancton quantification * Native support for binary and single-label multiclass quantification scenarios. * Model selection functionality that minimizes quantification-oriented loss functions. * Visualization tools for analysing the experimental results. @@ -116,3 +117,7 @@ are provided: ## Acknowledgments: SoBigData++ + +This work has been supported by the QuaDaSh project +_"Finanziato dall’Unione europea---Next Generation EU, +Missione 4 Componente 2 CUP B53D23026250001"_. diff --git a/quapy/data/datasets.py b/quapy/data/datasets.py index 838aee5..c08748f 100644 --- a/quapy/data/datasets.py +++ b/quapy/data/datasets.py @@ -114,7 +114,8 @@ def fetch_reviews(dataset_name, tfidf=False, min_df=None, data_home=None, pickle """ Loads a Reviews dataset as a Dataset instance, as used in `Esuli, A., Moreo, A., and Sebastiani, F. "A recurrent neural network for sentiment quantification." - Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018. `_. + Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018. + `_. The list of valid dataset names can be accessed in `quapy.data.datasets.REVIEWS_SENTIMENT_DATASETS` :param dataset_name: the name of the dataset: valid ones are 'hp', 'kindle', 'imdb'