adding tables generation
This commit is contained in:
parent
db1dbe2534
commit
aeb0fcf84b
|
@ -41,8 +41,8 @@ def models():
|
|||
# yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls()))
|
||||
# yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls()))
|
||||
# yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls()))
|
||||
# yield 'HDy', MultilabelNaiveAggregativeQuantifier(HDy(cls()))
|
||||
# yield 'EMQ', MultilabelQuantifier(EMQ(calibratedCls()))
|
||||
# yield 'NaiveHDy', MultilabelNaiveAggregativeQuantifier(HDy(cls()))
|
||||
# yield 'NaiveSLD', MultilabelNaiveAggregativeQuantifier(EMQ(calibratedCls()))
|
||||
# yield 'StackCC', MLCC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls()))
|
||||
# yield 'StackACC', MLACC(MultilabelStackedClassifier(cls()))
|
||||
|
@ -159,10 +159,14 @@ def load_results(result_path):
|
|||
estim_prevs = [np.vstack([estim_i, 1 - estim_i]).T for estim_i in estim_prevs] # add the constrained prevalence
|
||||
return true_prevs, estim_prevs
|
||||
results = pickle.load(open(result_path, 'rb'))
|
||||
results_npp = _unpack_result_lot(results['npp'])
|
||||
results_app = _unpack_result_lot(results['app'])
|
||||
return results_npp, results_app
|
||||
|
||||
results = {
|
||||
'npp': _unpack_result_lot(results['npp']),
|
||||
'app': _unpack_result_lot(results['app']),
|
||||
}
|
||||
return results
|
||||
# results_npp = _unpack_result_lot(results['npp'])
|
||||
# results_app = _unpack_result_lot(results['app'])
|
||||
# return results_npp, results_app
|
||||
|
||||
|
||||
def run_experiment(dataset_name, model_name, model):
|
||||
|
@ -197,3 +201,5 @@ if __name__ == '__main__':
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ import itertools
|
|||
from tqdm import tqdm
|
||||
|
||||
|
||||
def __check_error(error_metric):
|
||||
def check_error_str(error_metric):
|
||||
if isinstance(error_metric, str):
|
||||
error_metric = qp.error.from_name(error_metric)
|
||||
|
||||
|
@ -49,7 +49,7 @@ def ml_natural_prevalence_evaluation(model,
|
|||
error_metric:Union[str,Callable]='mae',
|
||||
random_seed=42):
|
||||
|
||||
error_metric = __check_error(error_metric)
|
||||
error_metric = check_error_str(error_metric)
|
||||
|
||||
true_prevs, estim_prevs = ml_natural_prevalence_prediction(model, test, sample_size, repeats, random_seed)
|
||||
|
||||
|
@ -88,7 +88,7 @@ def ml_artificial_prevalence_evaluation(model,
|
|||
error_metric:Union[str,Callable]='mae',
|
||||
random_seed=42):
|
||||
|
||||
error_metric = __check_error(error_metric)
|
||||
error_metric = check_error_str(error_metric)
|
||||
|
||||
true_prevs, estim_prevs = ml_artificial_prevalence_prediction(model, test, sample_size, n_prevalences, repeats, random_seed)
|
||||
|
||||
|
|
Loading…
Reference in New Issue