diff --git a/CHANGE_LOG.txt b/CHANGE_LOG.txt index 3590cf7..b12ca4c 100644 --- a/CHANGE_LOG.txt +++ b/CHANGE_LOG.txt @@ -1,9 +1,5 @@ Change Log 0.1.9 ---------------- -- [TODO] add LeQua2024 and normalized match distance to qp.error -- [TODO] add CDE-iteration and Bayes-CDE methods -- [TODO] add Friedman's method and DeBias -- [TODO] check ignore warning stuff (check https://docs.python.org/3/library/warnings.html#temporarily-suppressing-warnings) - Added LeQua 2024 datasets and normalized match distance to qp.error diff --git a/README.md b/README.md index 5e1dffa..839060d 100644 --- a/README.md +++ b/README.md @@ -45,19 +45,18 @@ of the test set. ```python import quapy as qp -from sklearn.linear_model import LogisticRegression -dataset = qp.datasets.fetch_twitter('semeval16') +dataset = qp.datasets.fetch_UCIBinaryDataset("yeast") +training, test = dataset.train_test # create an "Adjusted Classify & Count" quantifier -model = qp.method.aggregative.ACC(LogisticRegression()) -model.fit(dataset.training) +model = qp.method.aggregative.ACC() +model.fit(training) -estim_prevalence = model.quantify(dataset.test.instances) -true_prevalence = dataset.test.prevalence() +estim_prevalence = model.quantify(test.X) +true_prevalence = test.prevalence() error = qp.error.mae(true_prevalence, estim_prevalence) - print(f'Mean Absolute Error (MAE)={error:.3f}') ``` diff --git a/TODO.txt b/TODO.txt index e69de29..b7d69fa 100644 --- a/TODO.txt +++ b/TODO.txt @@ -0,0 +1,6 @@ +- [TODO] add ensemble methods SC-MQ, MC-SQ, MC-MQ +- [TODO] add HistNetQ +- [TODO] add CDE-iteration and Bayes-CDE methods +- [TODO] add Friedman's method and DeBias +- [TODO] check ignore warning stuff + check https://docs.python.org/3/library/warnings.html#temporarily-suppressing-warnings diff --git a/examples/4b.lequa2024_experiments.py b/examples/4b.lequa2024_experiments.py index 4ce5a43..38394e3 100644 --- a/examples/4b.lequa2024_experiments.py +++ b/examples/4b.lequa2024_experiments.py @@ -33,9 +33,9 @@ quantifier = KDEyML(classifier=LogisticRegression()) # model selection param_grid = { - 'classifier__C': np.logspace(-3, 3, 7), # classifier-dependent: inverse of regularization strength - 'classifier__class_weight': ['balanced', None], # classifier-dependent: weights of each class - 'bandwidth': np.linspace(0.01, 0.2, 20) # quantifier-dependent: bandwidth of the kernel + 'classifier__C': np.logspace(-3, 3, 7), # classifier-dependent: inverse of regularization strength + 'classifier__class_weight': ['balanced', None], # classifier-dependent: weights of each class + 'bandwidth': np.linspace(0.01, 0.2, 20) # quantifier-dependent: bandwidth of the kernel } model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, error='mrae', refit=False, verbose=True) quantifier = model_selection.fit(training)