diff --git a/TODO.txt b/TODO.txt index 7e2766e..3c00f94 100644 --- a/TODO.txt +++ b/TODO.txt @@ -3,6 +3,7 @@ Packaging: Documentation with sphinx Document methods with paper references unit-tests +clean wiki_examples! Refactor: ========================================== @@ -31,6 +32,9 @@ OVR I believe is currently tied to aggregative methods. We should provide a gene Currently, being "binary" only adds one checker; we should figure out how to impose the check to be automatically performed Add random seed management to support replicability (see temp_seed in util.py). GridSearchQ is not trully parallelized. It only parallelizes on the predictions. +In the context of a quantifier (e.g., QuaNet or CC), the parameters of the learner should be prefixed with "estimator__", + in QuaNet this is resolved with a __check_params_colision, but this should be improved. It might be cumbersome to + impose the "estimator__" prefix for, e.g., quantifiers like CC though... This should be changed everywhere... Improvements: ========================================== diff --git a/quapy/classification/neural.py b/quapy/classification/neural.py index afeb649..17f3e39 100644 --- a/quapy/classification/neural.py +++ b/quapy/classification/neural.py @@ -18,7 +18,7 @@ from quapy.util import EarlyStop class NeuralClassifierTrainer: def __init__(self, - net, # TextClassifierNet + net: 'TextClassifierNet', lr=1e-3, weight_decay=0, patience=10, diff --git a/quapy/method/aggregative.py b/quapy/method/aggregative.py index 5e9268b..5997e3a 100644 --- a/quapy/method/aggregative.py +++ b/quapy/method/aggregative.py @@ -138,12 +138,16 @@ def training_helper(learner, if isinstance(learner, BaseQuantifier): learner.fit(train) else: - learner.fit(train.instances, train.labels) + learner.fit(*train.Xy) else: if ensure_probabilistic: if not hasattr(learner, 'predict_proba'): raise AssertionError('error: the learner cannot be calibrated since fit_learner is set to False') - unused = data + unused = None + if val_split.__class__.__name__ == LabelledCollection.__name__: + unused = val_split + if data is not None: + unused = unused+data return learner, unused @@ -193,6 +197,8 @@ class ACC(AggregativeQuantifier): if val_split is None: val_split = self.val_split if isinstance(val_split, int): + assert fit_learner == True, \ + 'the parameters for the adjustment cannot be estimated with kFCV with fit_learner=False' # kFCV estimation of parameters y, y_ = [], [] kfcv = StratifiedKFold(n_splits=val_split) @@ -280,6 +286,8 @@ class PACC(AggregativeProbabilisticQuantifier): val_split = self.val_split if isinstance(val_split, int): + assert fit_learner == True, \ + 'the parameters for the adjustment cannot be estimated with kFCV with fit_learner=False' # kFCV estimation of parameters y, y_ = [], [] kfcv = StratifiedKFold(n_splits=val_split) @@ -529,6 +537,8 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier): if val_split is None: val_split = self.val_split if isinstance(val_split, int): + assert fit_learner == True, \ + 'the parameters for the adjustment cannot be estimated with kFCV with fit_learner=False' # kFCV estimation of parameters y, probabilities = [], [] kfcv = StratifiedKFold(n_splits=val_split) diff --git a/quapy/method/neural.py b/quapy/method/neural.py index 29a4127..1cc7b96 100644 --- a/quapy/method/neural.py +++ b/quapy/method/neural.py @@ -69,19 +69,19 @@ class QuaNetTrainer(BaseQuantifier): :return: self """ self._classes_ = data.classes_ - classifier_data, unused_data = data.split_stratified(0.4) - train_data, valid_data = unused_data.split_stratified(0.66) # 0.66 split of 60% makes 40% and 20% - - print('Classifier data: ', len(classifier_data)) - print('Q-Training data: ', len(train_data)) - print('Q-Valid data: ', len(valid_data)) os.makedirs(self.checkpointdir, exist_ok=True) + if fit_learner: + classifier_data, unused_data = data.split_stratified(0.4) + train_data, valid_data = unused_data.split_stratified(0.66) # 0.66 split of 60% makes 40% and 20% + self.learner.fit(*classifier_data.Xy) + else: + classifier_data = None + train_data, valid_data = data.split_stratified(0.66) + # estimate the hard and soft stats tpr and fpr of the classifier self.tr_prev = data.prevalence() - self.learner.fit(*classifier_data.Xy) - # compute the posterior probabilities of the instances valid_posteriors = self.learner.predict_proba(valid_data.instances) train_posteriors = self.learner.predict_proba(train_data.instances) @@ -132,7 +132,6 @@ class QuaNetTrainer(BaseQuantifier): print(f'training ended by patience exhausted; loading best model parameters in {checkpoint} ' f'for epoch {early_stop.best_epoch}') self.quanet.load_state_dict(torch.load(checkpoint)) - #self.epoch(valid_data, valid_posteriors, self.va_iter, epoch_i, early_stop, train=True) break return self @@ -144,9 +143,7 @@ class QuaNetTrainer(BaseQuantifier): predictions = posteriors if quantifier.probabilistic else label_predictions prevs_estim.extend(quantifier.aggregate(predictions)) - # add the class-conditional predictions P(y'i|yj) from ACC and PACC - # prevs_estim.extend(self.quantifiers['acc'].Pte_cond_estim_.flatten()) - # prevs_estim.extend(self.quantifiers['pacc'].Pte_cond_estim_.flatten()) + # there is no real need for adding static estims like the TPR or FPR from training since those are constant return prevs_estim @@ -164,8 +161,6 @@ class QuaNetTrainer(BaseQuantifier): def epoch(self, data: LabelledCollection, posteriors, iterations, epoch, early_stop, train): mse_loss = MSELoss() - # prevpoints = F.get_nprevpoints_approximation(iterations, self.quanet.n_classes) - # iterations = F.num_prevalence_combinations(prevpoints, self.quanet.n_classes) self.quanet.train(mode=train) losses = [] @@ -176,11 +171,10 @@ class QuaNetTrainer(BaseQuantifier): with qp.util.temp_seed(0): sampling_index_gen = data.artificial_sampling_index_generator(self.sample_size, prevpoints) else: - # sampling_index_gen = data.artificial_sampling_index_generator(self.sample_size, prevpoints) - sampling_index_gen = [data.sampling_index(self.sample_size, *prev) for prev in F.uniform_simplex_sampling(data.n_classes, iterations)] + sampling_index_gen = [data.sampling_index(self.sample_size, *prev) for prev in + F.uniform_simplex_sampling(data.n_classes, iterations)] pbar = tqdm(sampling_index_gen, total=iterations) if train else sampling_index_gen - rand_it_show = np.random.randint(iterations) for it, index in enumerate(pbar): sample_data = data.sampling_from_index(index) sample_posteriors = posteriors[index] @@ -218,27 +212,14 @@ class QuaNetTrainer(BaseQuantifier): f'val-mseloss={self.status["va-loss"]:.5f} val-maeloss={self.status["va-mae"]:.5f} ' f'patience={early_stop.patience}/{early_stop.PATIENCE_LIMIT}') - # if it==rand_it_show: - # print() - # print('='*100) - # print('Training: ' if train else 'Validation:') - # print('=' * 100) - # print('True: ', ptrue.cpu().numpy().flatten()) - # print('Estim: ', phat.detach().cpu().numpy().flatten()) - # for pred, name in zip(np.asarray(quant_estims).reshape(-1,data.n_classes), - # ['cc', 'acc', 'pcc', 'pacc', 'emq', 'Pte[acc]','','','Pte[pacc]','','']): - # print(name, pred) - - - def get_params(self, deep=True): return {**self.learner.get_params(), **self.quanet_params} def set_params(self, **parameters): - learner_params={} + learner_params = {} for key, val in parameters.items(): if key in self.quanet_params: - self.quanet_params[key]=val + self.quanet_params[key] = val else: learner_params[key] = val self.learner.set_params(**learner_params)