refactoring everything
This commit is contained in:
parent
8399552c8d
commit
985f430d52
|
@ -8,50 +8,28 @@ from quapy.protocol import AbstractProtocol
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
def load_sample(path, class_name, max_lines=-1):
|
||||||
# print('reading', path)
|
"""
|
||||||
if verbose:
|
Loads a sample json as a dataframe and returns text and labels for
|
||||||
print(f'loading {path}...', end='')
|
the given class_name
|
||||||
df = pd.read_csv(path, sep='\t')
|
|
||||||
if verbose:
|
|
||||||
print('[done]')
|
|
||||||
X = df['text'].values
|
|
||||||
y = df['continent'].values
|
|
||||||
|
|
||||||
if parse_columns:
|
:param path: path to a json file
|
||||||
rank = df['rank'].values
|
:param class_name: string representing the target class
|
||||||
scores = df['score'].values
|
:param max_lines: if provided and > 0 then returns only the
|
||||||
rank = rank[y != 'Antarctica']
|
first requested number of instances
|
||||||
scores = scores[y != 'Antarctica']
|
:return: texts and labels for class_name
|
||||||
|
"""
|
||||||
X = X[y!='Antarctica']
|
df = pd.read_json(path)
|
||||||
y = y[y!='Antarctica']
|
text = df.text.values
|
||||||
|
try:
|
||||||
if parse_columns:
|
labels = df[class_name].values
|
||||||
order = np.argsort(rank)
|
except KeyError as e:
|
||||||
X = X[order]
|
print(f'error in {path}; key {class_name} not found')
|
||||||
y = y[order]
|
raise e
|
||||||
rank = rank[order]
|
|
||||||
scores = scores[order]
|
|
||||||
|
|
||||||
if max_lines is not None:
|
|
||||||
X = X[:max_lines]
|
|
||||||
y = y[:max_lines]
|
|
||||||
|
|
||||||
return X, y
|
|
||||||
|
|
||||||
|
|
||||||
def load_json_sample(path, class_name, max_lines=-1):
|
|
||||||
obj = json.load(open(path, 'rt'))
|
|
||||||
keys = [f'{id}' for id in range(len(obj['text'].keys()))]
|
|
||||||
text = [obj['text'][id] for id in keys]
|
|
||||||
#print(list(obj.keys()))
|
|
||||||
#import sys; sys.exit(0)
|
|
||||||
classes = [obj[class_name][id] for id in keys]
|
|
||||||
if max_lines is not None and max_lines>0:
|
if max_lines is not None and max_lines>0:
|
||||||
text = text[:max_lines]
|
text = text[:max_lines]
|
||||||
classes = classes[:max_lines]
|
labels = labels[:max_lines]
|
||||||
return text, classes
|
return text, labels
|
||||||
|
|
||||||
|
|
||||||
class TextRankings:
|
class TextRankings:
|
||||||
|
@ -75,49 +53,81 @@ class TextRankings:
|
||||||
return texts, labels
|
return texts, labels
|
||||||
|
|
||||||
|
|
||||||
def get_query_id_from_path(path, prefix='training', posfix='200SPLIT'):
|
def filter_by_classes(X, y, classes):
|
||||||
qid = path
|
idx = np.isin(y, classes)
|
||||||
qid = qid[:qid.index(posfix)]
|
return X[idx], y[idx]
|
||||||
qid = qid[qid.index(prefix)+len(prefix):]
|
|
||||||
return qid
|
|
||||||
|
|
||||||
|
|
||||||
class RetrievedSamples(AbstractProtocol):
|
class RetrievedSamples(AbstractProtocol):
|
||||||
|
|
||||||
def __init__(self, path_dir: str, load_fn, vectorizer, max_train_lines=None, max_test_lines=None, classes=None, class_name=None):
|
def __init__(self,
|
||||||
self.path_dir = path_dir
|
class_home: str,
|
||||||
|
test_rankings_path: str,
|
||||||
|
load_fn,
|
||||||
|
vectorizer,
|
||||||
|
class_name,
|
||||||
|
max_train_lines=None,
|
||||||
|
max_test_lines=None,
|
||||||
|
classes=None
|
||||||
|
):
|
||||||
|
self.class_home = class_home
|
||||||
|
self.test_rankings_df = pd.read_json(test_rankings_path)
|
||||||
self.load_fn = load_fn
|
self.load_fn = load_fn
|
||||||
self.vectorizer = vectorizer
|
self.vectorizer = vectorizer
|
||||||
|
self.class_name = class_name
|
||||||
self.max_train_lines = max_train_lines
|
self.max_train_lines = max_train_lines
|
||||||
self.max_test_lines = max_test_lines
|
self.max_test_lines = max_test_lines
|
||||||
self.classes=classes
|
self.classes=classes
|
||||||
assert class_name is not None, 'class name should be specified'
|
|
||||||
self.class_name = class_name
|
|
||||||
self.text_samples = TextRankings(join(self.path_dir, 'testRankingsRetrieval.json'), class_name=class_name)
|
|
||||||
|
|
||||||
|
|
||||||
def __call__(self):
|
def __call__(self):
|
||||||
|
|
||||||
for file in glob(join(self.path_dir, 'training*SPLIT.json')):
|
for file in self._list_queries():
|
||||||
|
|
||||||
X, y = self.load_fn(file, class_name=self.class_name, max_lines=self.max_train_lines)
|
texts, y = self.load_fn(file, class_name=self.class_name, max_lines=self.max_train_lines)
|
||||||
X = self.vectorizer.transform(X)
|
texts, y = filter_by_classes(texts, y, self.classes)
|
||||||
|
X = self.vectorizer.transform(texts)
|
||||||
train_sample = LabelledCollection(X, y, classes=self.classes)
|
train_sample = LabelledCollection(X, y, classes=self.classes)
|
||||||
|
|
||||||
query_id = get_query_id_from_path(file)
|
query_id = self._get_query_id_from_path(file)
|
||||||
X, y = self.text_samples.get_sample_Xy(query_id, max_lines=self.max_test_lines)
|
texts, y = self._get_test_sample(query_id, max_lines=self.max_test_lines)
|
||||||
|
texts, y = filter_by_classes(texts, y, self.classes)
|
||||||
|
X = self.vectorizer.transform(texts)
|
||||||
|
|
||||||
# if len(X)!=qp.environ['SAMPLE_SIZE']:
|
|
||||||
# print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
|
|
||||||
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
|
|
||||||
X = self.vectorizer.transform(X)
|
|
||||||
try:
|
try:
|
||||||
test_sample = LabelledCollection(X, y, classes=train_sample.classes_)
|
test_sample = LabelledCollection(X, y, classes=train_sample.classes_)
|
||||||
|
yield train_sample, test_sample
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
print(f'file {file} caused error {e}')
|
print(f'file {file} caused an exception: {e}')
|
||||||
yield None, None
|
yield None, None
|
||||||
|
|
||||||
# print('train #classes:', train_sample.n_classes, train_sample.prevalence())
|
|
||||||
# print('test #classes:', test_sample.n_classes, test_sample.prevalence())
|
|
||||||
|
|
||||||
yield train_sample, test_sample
|
def _list_queries(self):
|
||||||
|
return sorted(glob(join(self.class_home, 'training_Query*200SPLIT.json')))
|
||||||
|
|
||||||
|
def _get_test_sample(self, query_id, max_lines=-1):
|
||||||
|
df = self.test_rankings_df
|
||||||
|
sel_df = df[df.qid==int(query_id)]
|
||||||
|
texts = sel_df.text.values
|
||||||
|
try:
|
||||||
|
labels = sel_df[self.class_name].values
|
||||||
|
except KeyError as e:
|
||||||
|
print(f'error: key {self.class_name} not found in test rankings')
|
||||||
|
raise e
|
||||||
|
if max_lines > 0 and len(texts) > max_lines:
|
||||||
|
ranks = sel_df.rank.values
|
||||||
|
idx = np.argsort(ranks)[:max_lines]
|
||||||
|
texts = np.asarray(texts)[idx]
|
||||||
|
labels = np.asarray(labels)[idx]
|
||||||
|
return texts, labels
|
||||||
|
|
||||||
|
def total(self):
|
||||||
|
return len(self._list_queries())
|
||||||
|
|
||||||
|
def _get_query_id_from_path(self, path):
|
||||||
|
prefix = 'training_Query-'
|
||||||
|
posfix = 'Sample-200SPLIT'
|
||||||
|
qid = path
|
||||||
|
qid = qid[:qid.index(posfix)]
|
||||||
|
qid = qid[qid.index(prefix) + len(prefix):]
|
||||||
|
return qid
|
|
@ -1,427 +0,0 @@
|
||||||
import os.path
|
|
||||||
import numpy as np
|
|
||||||
import itertools
|
|
||||||
from scipy.stats import ttest_ind_from_stats, wilcoxon
|
|
||||||
from pathlib import Path
|
|
||||||
from os.path import join
|
|
||||||
|
|
||||||
|
|
||||||
class Table:
|
|
||||||
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
|
||||||
|
|
||||||
def __init__(self, benchmarks, methods, lower_is_better=True, ttest='ttest', prec_mean=3,
|
|
||||||
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--',
|
|
||||||
color=True, color_mode='local', maxtone=50):
|
|
||||||
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
|
||||||
|
|
||||||
self.benchmarks = np.asarray(benchmarks)
|
|
||||||
self.benchmark_index = {row:i for i, row in enumerate(benchmarks)}
|
|
||||||
|
|
||||||
self.methods = np.asarray(methods)
|
|
||||||
self.method_index = {col:j for j, col in enumerate(methods)}
|
|
||||||
|
|
||||||
self.map = {}
|
|
||||||
# keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
|
||||||
self._addmap('values', dtype=object)
|
|
||||||
self.lower_is_better = lower_is_better
|
|
||||||
self.ttest = ttest
|
|
||||||
self.prec_mean = prec_mean
|
|
||||||
self.clean_zero = clean_zero
|
|
||||||
self.show_std = show_std
|
|
||||||
self.prec_std = prec_std
|
|
||||||
self.add_average = average
|
|
||||||
self.missing = missing
|
|
||||||
self.missing_str = missing_str
|
|
||||||
self.color = color
|
|
||||||
self.color_mode = color_mode
|
|
||||||
self.maxtone = maxtone
|
|
||||||
|
|
||||||
self.touch()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def nbenchmarks(self):
|
|
||||||
return len(self.benchmarks)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def nmethods(self):
|
|
||||||
return len(self.methods)
|
|
||||||
|
|
||||||
def touch(self):
|
|
||||||
self._modif = True
|
|
||||||
|
|
||||||
def update(self):
|
|
||||||
if self._modif:
|
|
||||||
self.compute()
|
|
||||||
|
|
||||||
def _getfilled(self):
|
|
||||||
return np.argwhere(self.map['fill'])
|
|
||||||
|
|
||||||
@property
|
|
||||||
def values(self):
|
|
||||||
return self.map['values']
|
|
||||||
|
|
||||||
def _indexes(self):
|
|
||||||
return itertools.product(range(self.nbenchmarks), range(self.nmethods))
|
|
||||||
|
|
||||||
def _addmap(self, map, dtype, func=None):
|
|
||||||
self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype)
|
|
||||||
if func is None:
|
|
||||||
return
|
|
||||||
m = self.map[map]
|
|
||||||
f = func
|
|
||||||
indexes = self._indexes() if map == 'fill' else self._getfilled()
|
|
||||||
for i, j in indexes:
|
|
||||||
m[i, j] = f(self.values[i, j])
|
|
||||||
|
|
||||||
def _addrank(self):
|
|
||||||
for i in range(self.nbenchmarks):
|
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
||||||
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
|
||||||
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
|
||||||
if not self.lower_is_better:
|
|
||||||
ranked_cols_idx = ranked_cols_idx[::-1]
|
|
||||||
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
|
|
||||||
|
|
||||||
def _addcolor(self):
|
|
||||||
minval = {}
|
|
||||||
maxval = {}
|
|
||||||
|
|
||||||
if self.color_mode == 'global':
|
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'])
|
|
||||||
col_means = [self.map['mean'][i, j] for i, j in filled_cols_idx]
|
|
||||||
if len(filled_cols_idx) > 0:
|
|
||||||
global_minval = min(col_means)
|
|
||||||
global_maxval = max(col_means)
|
|
||||||
for i in range(self.nbenchmarks):
|
|
||||||
minval[i] = global_minval
|
|
||||||
maxval[i] = global_maxval
|
|
||||||
elif self.color_mode == 'local':
|
|
||||||
for i in range(self.nbenchmarks):
|
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i, i + 1])
|
|
||||||
if len(filled_cols_idx)>0:
|
|
||||||
col_means = [self.map['mean'][i, j] for j in filled_cols_idx]
|
|
||||||
minval[i] = min(col_means)
|
|
||||||
maxval[i] = max(col_means)
|
|
||||||
|
|
||||||
else:
|
|
||||||
print(f'color mode {self.color_mode} not understood, valid ones are "local" and "global"; skip')
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(self.nbenchmarks):
|
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
||||||
for col_idx in filled_cols_idx:
|
|
||||||
val = self.map['mean'][i,col_idx]
|
|
||||||
if i not in maxval or i not in minval:
|
|
||||||
continue
|
|
||||||
norm = (maxval[i] - minval[i])
|
|
||||||
if norm > 0:
|
|
||||||
normval = (val - minval[i]) / norm
|
|
||||||
else:
|
|
||||||
normval = 0.5
|
|
||||||
|
|
||||||
if self.lower_is_better:
|
|
||||||
normval = 1 - normval
|
|
||||||
|
|
||||||
normval = np.clip(normval, 0,1)
|
|
||||||
|
|
||||||
self.map['color'][i, col_idx] = color_red2green_01(normval, self.maxtone)
|
|
||||||
|
|
||||||
def _run_ttest(self, row, col1, col2):
|
|
||||||
mean1 = self.map['mean'][row, col1]
|
|
||||||
std1 = self.map['std'][row, col1]
|
|
||||||
nobs1 = self.map['nobs'][row, col1]
|
|
||||||
mean2 = self.map['mean'][row, col2]
|
|
||||||
std2 = self.map['std'][row, col2]
|
|
||||||
nobs2 = self.map['nobs'][row, col2]
|
|
||||||
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
|
|
||||||
return p_val
|
|
||||||
|
|
||||||
def _run_wilcoxon(self, row, col1, col2):
|
|
||||||
values1 = self.map['values'][row, col1]
|
|
||||||
values2 = self.map['values'][row, col2]
|
|
||||||
try:
|
|
||||||
_, p_val = wilcoxon(values1, values2)
|
|
||||||
except ValueError:
|
|
||||||
p_val = 0
|
|
||||||
return p_val
|
|
||||||
|
|
||||||
def _add_statistical_test(self):
|
|
||||||
if self.ttest is None:
|
|
||||||
return
|
|
||||||
self.some_similar = [False]*self.nmethods
|
|
||||||
for i in range(self.nbenchmarks):
|
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
|
||||||
if len(filled_cols_idx) <= 1:
|
|
||||||
continue
|
|
||||||
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
|
||||||
best_pos = filled_cols_idx[np.argmin(col_means)]
|
|
||||||
|
|
||||||
for j in filled_cols_idx:
|
|
||||||
if j==best_pos:
|
|
||||||
continue
|
|
||||||
if self.ttest == 'ttest':
|
|
||||||
p_val = self._run_ttest(i, best_pos, j)
|
|
||||||
else:
|
|
||||||
p_val = self._run_wilcoxon(i, best_pos, j)
|
|
||||||
|
|
||||||
pval_outcome = pval_interpretation(p_val)
|
|
||||||
self.map['ttest'][i, j] = pval_outcome
|
|
||||||
if pval_outcome != 'Diff':
|
|
||||||
self.some_similar[j] = True
|
|
||||||
|
|
||||||
def compute(self):
|
|
||||||
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
|
|
||||||
self._addmap('mean', dtype=float, func=np.mean)
|
|
||||||
self._addmap('std', dtype=float, func=np.std)
|
|
||||||
self._addmap('nobs', dtype=float, func=len)
|
|
||||||
self._addmap('rank', dtype=int, func=None)
|
|
||||||
self._addmap('color', dtype=object, func=None)
|
|
||||||
self._addmap('ttest', dtype=object, func=None)
|
|
||||||
self._addmap('latex', dtype=object, func=None)
|
|
||||||
self._addrank()
|
|
||||||
self._addcolor()
|
|
||||||
self._add_statistical_test()
|
|
||||||
if self.add_average:
|
|
||||||
self._addave()
|
|
||||||
self._modif = False
|
|
||||||
|
|
||||||
def _is_column_full(self, col):
|
|
||||||
return all(self.map['fill'][:, self.method_index[col]])
|
|
||||||
|
|
||||||
def _addave(self):
|
|
||||||
ave = Table(['ave'], self.methods,
|
|
||||||
lower_is_better=self.lower_is_better,
|
|
||||||
ttest=self.ttest,
|
|
||||||
average=False,
|
|
||||||
missing=self.missing,
|
|
||||||
missing_str=self.missing_str,
|
|
||||||
prec_mean=self.prec_mean,
|
|
||||||
prec_std=self.prec_std,
|
|
||||||
clean_zero=self.clean_zero,
|
|
||||||
show_std=self.show_std,
|
|
||||||
color=self.color,
|
|
||||||
maxtone=self.maxtone)
|
|
||||||
for col in self.methods:
|
|
||||||
values = None
|
|
||||||
if self._is_column_full(col):
|
|
||||||
if self.ttest == 'ttest':
|
|
||||||
# values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
|
||||||
values = np.concatenate(self.values[:, self.method_index[col]])
|
|
||||||
else: # wilcoxon
|
|
||||||
# values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
|
||||||
values = np.concatenate(self.values[:, self.method_index[col]])
|
|
||||||
ave.add('ave', col, values)
|
|
||||||
self.average = ave
|
|
||||||
|
|
||||||
def add(self, benchmark, method, values):
|
|
||||||
if values is not None:
|
|
||||||
values = np.asarray(values)
|
|
||||||
if values.ndim==0:
|
|
||||||
values = values.flatten()
|
|
||||||
rid, cid = self._coordinates(benchmark, method)
|
|
||||||
self.map['values'][rid, cid] = values
|
|
||||||
self.touch()
|
|
||||||
|
|
||||||
def get(self, benchmark, method, attr='mean'):
|
|
||||||
self.update()
|
|
||||||
assert attr in self.map, f'unknwon attribute {attr}'
|
|
||||||
rid, cid = self._coordinates(benchmark, method)
|
|
||||||
if self.map['fill'][rid, cid]:
|
|
||||||
v = self.map[attr][rid, cid]
|
|
||||||
if v is None or (isinstance(v,float) and np.isnan(v)):
|
|
||||||
return self.missing
|
|
||||||
return v
|
|
||||||
else:
|
|
||||||
return self.missing
|
|
||||||
|
|
||||||
def _coordinates(self, benchmark, method):
|
|
||||||
assert benchmark in self.benchmark_index, f'benchmark {benchmark} out of range'
|
|
||||||
assert method in self.method_index, f'method {method} out of range'
|
|
||||||
rid = self.benchmark_index[benchmark]
|
|
||||||
cid = self.method_index[method]
|
|
||||||
return rid, cid
|
|
||||||
|
|
||||||
def get_average(self, method, attr='mean'):
|
|
||||||
self.update()
|
|
||||||
if self.add_average:
|
|
||||||
return self.average.get('ave', method, attr=attr)
|
|
||||||
return None
|
|
||||||
|
|
||||||
def get_color(self, benchmark, method):
|
|
||||||
color = self.get(benchmark, method, attr='color')
|
|
||||||
if color is None:
|
|
||||||
return ''
|
|
||||||
return color
|
|
||||||
|
|
||||||
def latex(self, benchmark, method):
|
|
||||||
self.update()
|
|
||||||
i,j = self._coordinates(benchmark, method)
|
|
||||||
if self.map['fill'][i,j] == False:
|
|
||||||
return self.missing_str
|
|
||||||
|
|
||||||
mean = self.map['mean'][i,j]
|
|
||||||
l = f" {mean:.{self.prec_mean}f}"
|
|
||||||
if self.clean_zero:
|
|
||||||
l = l.replace(' 0.', '.')
|
|
||||||
|
|
||||||
isbest = self.map['rank'][i,j] == 1
|
|
||||||
if isbest:
|
|
||||||
l = "\\textbf{"+l.strip()+"}"
|
|
||||||
|
|
||||||
stat = '' if self.ttest is None else '^{\phantom{\ddag}}'
|
|
||||||
if self.ttest is not None and self.some_similar[j]:
|
|
||||||
test_label = self.map['ttest'][i,j]
|
|
||||||
if test_label == 'Sim':
|
|
||||||
stat = '^{\dag}'
|
|
||||||
elif test_label == 'Same':
|
|
||||||
stat = '^{\ddag}'
|
|
||||||
elif isbest or test_label == 'Diff':
|
|
||||||
stat = '^{\phantom{\ddag}}'
|
|
||||||
|
|
||||||
std = ''
|
|
||||||
if self.show_std:
|
|
||||||
std = self.map['std'][i,j]
|
|
||||||
std = f" {std:.{self.prec_std}f}"
|
|
||||||
if self.clean_zero:
|
|
||||||
std = std.replace(' 0.', '.')
|
|
||||||
std = f"\pm {std:{self.prec_std}}"
|
|
||||||
|
|
||||||
if stat!='' or std!='':
|
|
||||||
l = f'{l}${stat}{std}$'
|
|
||||||
|
|
||||||
if self.color:
|
|
||||||
l += ' ' + self.map['color'][i,j]
|
|
||||||
|
|
||||||
return l
|
|
||||||
|
|
||||||
def latexPDF(self, path, name:str, *args, **kwargs):
|
|
||||||
if not name.endswith('.tex'):
|
|
||||||
name += '.tex'
|
|
||||||
|
|
||||||
self.latexSaveDocument(join(path, name), *args, **kwargs)
|
|
||||||
|
|
||||||
print("[Tables Done] runing latex")
|
|
||||||
os.chdir(path)
|
|
||||||
os.system('pdflatex '+name)
|
|
||||||
basename = name.replace('.tex', '')
|
|
||||||
os.system(f'rm {basename}.aux {basename}.bbl {basename}.blg {basename}.log {basename}.out {basename}.dvi')
|
|
||||||
os.chdir('..')
|
|
||||||
|
|
||||||
def latexSaveDocument(self, path, *args, **kwargs):
|
|
||||||
document = self.latexDocument(*args, **kwargs)
|
|
||||||
parent = Path(path).parent
|
|
||||||
os.makedirs(parent, exist_ok=True)
|
|
||||||
with open(path, 'wt') as foo:
|
|
||||||
foo.write(document)
|
|
||||||
print('text file save at ', path)
|
|
||||||
|
|
||||||
def latexDocument(self, *args, **kwargs):
|
|
||||||
document = """
|
|
||||||
\\documentclass[10pt,a4paper]{article}
|
|
||||||
\\usepackage[utf8]{inputenc}
|
|
||||||
\\usepackage{amsmath}
|
|
||||||
\\usepackage{amsfonts}
|
|
||||||
\\usepackage{amssymb}
|
|
||||||
\\usepackage{graphicx}
|
|
||||||
\\usepackage{xcolor}
|
|
||||||
\\usepackage{colortbl}
|
|
||||||
|
|
||||||
\\begin{document}
|
|
||||||
"""
|
|
||||||
document += self.latexTable(*args, **kwargs)
|
|
||||||
document += "\n\end{document}\n"
|
|
||||||
return document
|
|
||||||
|
|
||||||
def latexTable(self, benchmark_replace={}, method_replace={}, aslines=False, endl='\\\\\hline', resizebox=True):
|
|
||||||
table = """
|
|
||||||
\\begin{table}
|
|
||||||
\center
|
|
||||||
%%%\\resizebox{\\textwidth}{!}{% \n
|
|
||||||
"""
|
|
||||||
table += "\n\\begin{tabular}{|c"+"|c" * self.nmethods + "|}\n"
|
|
||||||
table += self.latexTabular(benchmark_replace, method_replace, aslines, endl)
|
|
||||||
table += "\n\\end{tabular}\n"
|
|
||||||
table += """
|
|
||||||
%%%}%
|
|
||||||
\end{table}
|
|
||||||
"""
|
|
||||||
if resizebox:
|
|
||||||
table = table.replace("%%%", "")
|
|
||||||
return table
|
|
||||||
|
|
||||||
def latexTabular(self, benchmark_replace={}, method_replace={}, aslines=False, endl='\\\\\hline'):
|
|
||||||
lines = []
|
|
||||||
l = '\multicolumn{1}{c|}{} & '
|
|
||||||
l += ' & '.join([method_replace.get(col, col) for col in self.methods])
|
|
||||||
l += ' \\\\\hline'
|
|
||||||
lines.append(l)
|
|
||||||
|
|
||||||
for row in self.benchmarks:
|
|
||||||
rowname = benchmark_replace.get(row, row)
|
|
||||||
l = rowname + ' & '
|
|
||||||
l += self.latexRow(row, endl=endl)
|
|
||||||
lines.append(l)
|
|
||||||
|
|
||||||
if self.add_average:
|
|
||||||
# l += '\hline\n'
|
|
||||||
l = '\hline \n \\textit{Average} & '
|
|
||||||
l += self.latexAverage(endl=endl)
|
|
||||||
lines.append(l)
|
|
||||||
if not aslines:
|
|
||||||
lines='\n'.join(lines)
|
|
||||||
return lines
|
|
||||||
|
|
||||||
def latexRow(self, benchmark, endl='\\\\\hline\n'):
|
|
||||||
s = [self.latex(benchmark, col) for col in self.methods]
|
|
||||||
s = ' & '.join(s)
|
|
||||||
s += ' ' + endl
|
|
||||||
return s
|
|
||||||
|
|
||||||
def latexAverage(self, endl='\\\\\hline\n'):
|
|
||||||
if self.add_average:
|
|
||||||
return self.average.latexRow('ave', endl=endl)
|
|
||||||
|
|
||||||
def getRankTable(self, prec_mean=0):
|
|
||||||
t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=prec_mean, average=True, maxtone=self.maxtone, ttest=None)
|
|
||||||
for rid, cid in self._getfilled():
|
|
||||||
row = self.benchmarks[rid]
|
|
||||||
col = self.methods[cid]
|
|
||||||
t.add(row, col, self.get(row, col, 'rank'))
|
|
||||||
t.compute()
|
|
||||||
return t
|
|
||||||
|
|
||||||
def dropMethods(self, methods):
|
|
||||||
drop_index = [self.method_index[m] for m in methods]
|
|
||||||
new_methods = np.delete(self.methods, drop_index)
|
|
||||||
new_index = {col:j for j, col in enumerate(new_methods)}
|
|
||||||
|
|
||||||
self.map['values'] = self.values[:,np.asarray([self.method_index[m] for m in new_methods], dtype=int)]
|
|
||||||
self.methods = new_methods
|
|
||||||
self.method_index = new_index
|
|
||||||
self.touch()
|
|
||||||
|
|
||||||
|
|
||||||
def pval_interpretation(p_val):
|
|
||||||
if 0.005 >= p_val:
|
|
||||||
return 'Diff'
|
|
||||||
elif 0.05 >= p_val > 0.005:
|
|
||||||
return 'Sim'
|
|
||||||
elif p_val > 0.05:
|
|
||||||
return 'Same'
|
|
||||||
|
|
||||||
|
|
||||||
def color_red2green_01(val, maxtone=50):
|
|
||||||
if np.isnan(val): return None
|
|
||||||
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
|
|
||||||
|
|
||||||
|
|
||||||
# rescale to [-1,1]
|
|
||||||
val = val * 2 - 1
|
|
||||||
if val < 0:
|
|
||||||
color = 'red'
|
|
||||||
tone = maxtone * (-val)
|
|
||||||
else:
|
|
||||||
color = 'green'
|
|
||||||
tone = maxtone * val
|
|
||||||
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
|
|
|
@ -1,66 +0,0 @@
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
||||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
||||||
from sklearn.metrics import make_scorer, f1_score
|
|
||||||
from sklearn.svm import LinearSVC
|
|
||||||
|
|
||||||
from quapy.data.base import LabelledCollection
|
|
||||||
from sklearn.model_selection import cross_val_score, GridSearchCV
|
|
||||||
|
|
||||||
from os.path import join
|
|
||||||
|
|
||||||
"""
|
|
||||||
In this experiment, I simply try to understand whether the learning task can be learned or not.
|
|
||||||
The problem is that we are quantifying the categories based on the alphabetical order (of what?).
|
|
||||||
"""
|
|
||||||
|
|
||||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
|
||||||
if verbose:
|
|
||||||
print(f'loading {path}...', end='')
|
|
||||||
df = pd.read_csv(path, sep='\t')
|
|
||||||
if verbose:
|
|
||||||
print('[done]')
|
|
||||||
X = df['text'].values
|
|
||||||
y = df['continent'].values
|
|
||||||
|
|
||||||
if parse_columns:
|
|
||||||
rank = df['rank'].values
|
|
||||||
scores = df['score'].values
|
|
||||||
order = np.argsort(rank)
|
|
||||||
X = X[order]
|
|
||||||
y = y[order]
|
|
||||||
rank = rank[order]
|
|
||||||
scores = scores[order]
|
|
||||||
|
|
||||||
if max_lines is not None:
|
|
||||||
X = X[:max_lines]
|
|
||||||
y = y[:max_lines]
|
|
||||||
|
|
||||||
return X, y
|
|
||||||
|
|
||||||
data_path = './50_50_split_trec'
|
|
||||||
train_path = join(data_path, 'train_50_50_continent.txt')
|
|
||||||
|
|
||||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
|
||||||
data = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
|
||||||
data = data.sampling(20000)
|
|
||||||
train, test = data.split_stratified()
|
|
||||||
train.instances = tfidf.fit_transform(train.instances)
|
|
||||||
test.instances = tfidf.transform(test.instances)
|
|
||||||
|
|
||||||
# svm = LinearSVC()
|
|
||||||
# cls = GridSearchCV(svm, param_grid={'C':np.logspace(-3,3,7), 'class_weight':['balanced', None]})
|
|
||||||
cls = LogisticRegression()
|
|
||||||
cls.fit(*train.Xy)
|
|
||||||
|
|
||||||
# score = cross_val_score(LogisticRegressionCV(), *data.Xy, scoring=make_scorer(f1_score, average='macro'), n_jobs=-1, cv=5)
|
|
||||||
# print(score)
|
|
||||||
# print(np.mean(score))
|
|
||||||
|
|
||||||
y_pred = cls.predict(test.instances)
|
|
||||||
macrof1 = f1_score(y_true=test.labels, y_pred=y_pred, average='macro')
|
|
||||||
microf1 = f1_score(y_true=test.labels, y_pred=y_pred, average='micro')
|
|
||||||
|
|
||||||
print('macro', macrof1)
|
|
||||||
print('micro', microf1)
|
|
Loading…
Reference in New Issue