testing the class-reweight method on UCI datasets

This commit is contained in:
Alejandro Moreo Fernandez 2021-11-04 16:09:49 +01:00
parent 3df55f3613
commit 970008c9f7
3 changed files with 52 additions and 1 deletions

View File

@ -113,6 +113,7 @@ def train_eval(class_weight, test):
probabilistic = True
Prompter = PACC # the method creating the very first guess
Baseline = PACC if probabilistic else ACC
bname = Baseline.__name__
@ -135,6 +136,10 @@ for ptr in train_prevs:
reference_hyperplane = LogisticRegression().fit(*train.Xy)
baseline = Baseline(LogisticRegression()).fit(train)
if Baseline != Prompter:
prompter = Prompter(LogisticRegression()).fit(train)
else:
prompter = baseline
for pte in test_prevs:
test = test_pool.sampling(10000, pte)
@ -145,7 +150,7 @@ for ptr in train_prevs:
berrors.append(ae_baseline)
# guessed_prevalence = train.prevalence()
guessed_prevalence = prev_estim_acc
guessed_prevalence = prompter.quantify(test.instances)
niter=10
last_prev = None

View File

@ -0,0 +1,45 @@
from sklearn.linear_model import LogisticRegression
import numpy as np
import quapy as qp
from data import LabelledCollection
from method.base import BaseQuantifier
from quapy.method.aggregative import AggregativeQuantifier, AggregativeProbabilisticQuantifier, CC, ACC, PCC, PACC
class ClassWeightPCC(BaseQuantifier):
def __init__(self):
self.learner = None
def fit(self, data: LabelledCollection, fit_learner=True):
self.train = data
self.prompt = PACC(LogisticRegression()).fit(self.train)
return self
def quantify(self, instances):
guessed_prevalence = self.prompt.quantify(instances)
class_weight = self._get_class_weight(guessed_prevalence)
return PCC(LogisticRegression(class_weight=class_weight)).fit(self.train).quantify(instances)
def _get_class_weight(self, prevalence):
# class_weight = compute_class_weight('balanced', classes=[0, 1], y=mock_y(prevalence))
# return {0: class_weight[1], 1: class_weight[0]}
# weights = prevalence/prevalence.min()
weights = prevalence / self.train.prevalence()
normfactor = weights.min()
if normfactor <= 0:
normfactor = 1E-3
weights /= normfactor
return {0:weights[0], 1:weights[1]}
def set_params(self, **parameters):
pass
def get_params(self, deep=True):
return self.prompt.get_params()
@property
def classes_(self):
return self.train.classes_

View File

@ -333,6 +333,7 @@ class Dataset:
yield Dataset(train, test, name=f'fold {(i % nfolds) + 1}/{nfolds} (round={(i // nfolds) + 1})')
def isbinary(data):
if isinstance(data, Dataset) or isinstance(data, LabelledCollection):
return data.binary