diff --git a/examples/0.basics.py b/examples/0.basics.py index a5ce67d..a891475 100644 --- a/examples/0.basics.py +++ b/examples/0.basics.py @@ -6,6 +6,7 @@ import numpy as np from sklearn.linear_model import LogisticRegression import quapy as qp +from quapy.method.aggregative import PACC # let's fetch some dataset to run one experiment # datasets are available in the "qp.data.datasets" module (there is a shortcut in qp.datasets) @@ -34,7 +35,7 @@ print(f'training prevalence = {F.strprev(train.prevalence())}') # let us train one quantifier, for example, PACC using a sklearn's Logistic Regressor as the underlying classifier classifier = LogisticRegression() -pacc = qp.method.aggregative.PACC(classifier) +pacc = PACC(classifier) print(f'training {pacc}') pacc.fit(X, y) diff --git a/examples/1.model_selection.py b/examples/1.model_selection.py index 47a7620..6c96671 100644 --- a/examples/1.model_selection.py +++ b/examples/1.model_selection.py @@ -24,7 +24,8 @@ print(f'running model selection with N_JOBS={qp.environ["N_JOBS"]}; ' training, test = qp.datasets.fetch_UCIMulticlassDataset('letter').train_test # evaluation in terms of MAE with default hyperparameters -model.fit(*training.Xy) +Xtr, ytr = training.Xy +model.fit(Xtr, ytr) mae_score = qp.evaluation.evaluate(model, protocol=UPP(test), error_metric='mae') print(f'MAE (non optimized)={mae_score:.5f}')