launching PQ
This commit is contained in:
parent
78fd05ab33
commit
90981088b0
|
|
@ -54,12 +54,13 @@ def methods():
|
|||
yield 'BayesianACC', ACC(LR()), acc_hyper, lambda hyper: BayesianCC(LR(), mcmc_seed=0)
|
||||
|
||||
yield 'BootstrapHDy', DMy(LR()), hdy_hyper, lambda hyper: AggregativeBootstrap(DMy(LR(), **hyper), n_test_samples=1000, random_state=0),
|
||||
# yield 'BayesianHDy', PQ(LR(), stan_seed=0), hdy_hyper
|
||||
yield 'BayesianHDy', DMy(LR()), hdy_hyper, lambda hyper: PQ(LR(), stan_seed=0, **hyper),
|
||||
|
||||
yield 'BootstrapKDEy', KDEyML(LR()), kdey_hyper, lambda hyper: AggregativeBootstrap(KDEyML(LR(), **hyper), n_test_samples=1000, random_state=0, verbose=True),
|
||||
yield 'BayesianKDEy', KDEyML(LR()), kdey_hyper, lambda hyper: BayesianKDEy(mcmc_seed=0, **hyper),
|
||||
yield 'BayesianKDEy*', KDEyCLR(LR()), kdey_hyper_clr, lambda hyper: BayesianKDEy(kernel='aitchison', mcmc_seed=0, **hyper),
|
||||
yield 'BayKDEy*CLR', KDEyCLR(LR()), kdey_hyper_clr, lambda hyper: BayesianKDEy(kernel='aitchison', mcmc_seed=0, explore_CLR=True, step_size=.15, **hyper),
|
||||
yield 'BayKDEy*CLR', KDEyCLR(LR()), kdey_hyper_clr, lambda hyper: BayesianKDEy(kernel='aitchison', mcmc_seed=0, explore_CLR=True, step_size=.1, **hyper),
|
||||
# yield 'BayKDEy*CLR2', KDEyCLR(LR()), kdey_hyper_clr, lambda hyper: BayesianKDEy(kernel='aitchison', mcmc_seed=0, explore_CLR=True, step_size=.15, **hyper),
|
||||
|
||||
|
||||
def model_selection(train: LabelledCollection, point_quantifier: AggregativeQuantifier, grid: dict):
|
||||
|
|
|
|||
|
|
@ -323,13 +323,16 @@ class ConfidenceIntervals(ConfidenceRegionABC):
|
|||
:param samples: np.ndarray of shape (n_bootstrap_samples, n_classes)
|
||||
:param confidence_level: float, the confidence level (default 0.95)
|
||||
"""
|
||||
def __init__(self, samples, confidence_level=0.95):
|
||||
def __init__(self, samples, confidence_level=0.95, bonferroni_correction=False):
|
||||
assert 0 < confidence_level < 1, f'{confidence_level=} must be in range(0,1)'
|
||||
|
||||
samples = np.asarray(samples)
|
||||
|
||||
self.means_ = samples.mean(axis=0)
|
||||
alpha = 1-confidence_level
|
||||
if bonferroni_correction:
|
||||
n_classes = samples.shape[-1]
|
||||
alpha = alpha/n_classes
|
||||
low_perc = (alpha/2.)*100
|
||||
high_perc = (1-alpha/2.)*100
|
||||
self.I_low, self.I_high = np.percentile(samples, q=[low_perc, high_perc], axis=0)
|
||||
|
|
|
|||
Loading…
Reference in New Issue