diff --git a/docs/source/index.rst b/docs/source/index.rst index d2918cf..7c7916c 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -68,15 +68,15 @@ Manuals The following manuals illustrate several aspects of QuaPy through examples: .. toctree:: - :maxdepth: 1 + :maxdepth: 2 - wiki/Datasets - wiki/Evaluation - wiki/ExplicitLossMinimization - wiki/Methods - wiki/Model-Selection - wiki/Plotting - wiki/Protocols + manuals/datasets + manuals/evaluation + manuals/explicit-loss-minimization + manuals/methods + manuals/model-selection + manuals/plotting + manuals/protocols .. toctree:: :hidden: diff --git a/docs/source/wiki/Datasets.md b/docs/source/manuals/datasets.md similarity index 99% rename from docs/source/wiki/Datasets.md rename to docs/source/manuals/datasets.md index 904fe53..cc972cd 100644 --- a/docs/source/wiki/Datasets.md +++ b/docs/source/manuals/datasets.md @@ -67,9 +67,8 @@ for method in methods: ``` However, generating samples for evaluation purposes is tackled in QuaPy -by means of the evaluation protocols (see the dedicated entries in the Wiki -for [evaluation](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation) and -[protocols](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols)). +by means of the evaluation protocols (see the dedicated entries in the manuals +for [evaluation](./evaluation) and [protocols](./protocols)). ## Reviews Datasets diff --git a/docs/source/wiki/Evaluation.md b/docs/source/manuals/evaluation.md similarity index 100% rename from docs/source/wiki/Evaluation.md rename to docs/source/manuals/evaluation.md diff --git a/docs/source/wiki/ExplicitLossMinimization.md b/docs/source/manuals/explicit-loss-minimization.md similarity index 100% rename from docs/source/wiki/ExplicitLossMinimization.md rename to docs/source/manuals/explicit-loss-minimization.md diff --git a/docs/source/wiki/Methods.md b/docs/source/manuals/methods.md similarity index 98% rename from docs/source/wiki/Methods.md rename to docs/source/manuals/methods.md index 760df16..03c5c2a 100644 --- a/docs/source/wiki/Methods.md +++ b/docs/source/manuals/methods.md @@ -29,7 +29,7 @@ instance in a sample-- while in quantification the output for a sample is one single array of class prevalences). Quantifiers also extend from scikit-learn's `BaseEstimator`, in order to simplify the use of `set_params` and `get_params` used in -[model selector](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection). +[model selection](./model-selection). ## Aggregative Methods @@ -96,7 +96,7 @@ classifier, and then _clones_ these classifiers and explores the combinations of hyperparameters that are specific to the quantifier (this can result in huge time savings). Concerning the inference phase, this two-step process allow the evaluation of many -standard protocols (e.g., the [artificial sampling protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation)) to be +standard protocols (e.g., the [artificial sampling protocol](./evaluation)) to be carried out very efficiently. The reason is that the entire set can be pre-classified once, and the quantification estimations for different samples can directly reuse these predictions, without requiring to classify each element every time. @@ -484,8 +484,7 @@ the performance estimated for each member of the ensemble in terms of that evalu When using any of the above options, it is important to set the `red_size` parameter, which informs of the number of members to retain. -Please, check the [model selection](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection) -wiki if you want to optimize the hyperparameters of ensemble for classification or quantification. +Please, check the [model selection manual](./model-selection) if you want to optimize the hyperparameters of ensemble for classification or quantification. ### The QuaNet neural network diff --git a/docs/source/wiki/Model-Selection.md b/docs/source/manuals/model-selection.md similarity index 97% rename from docs/source/wiki/Model-Selection.md rename to docs/source/manuals/model-selection.md index 9dd5bab..097f902 100644 --- a/docs/source/wiki/Model-Selection.md +++ b/docs/source/manuals/model-selection.md @@ -33,11 +33,11 @@ of scenarios exhibiting different degrees of prior probability shift. The class _qp.model_selection.GridSearchQ_ implements a grid-search exploration over the space of -hyper-parameter combinations that [evaluates](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation) +hyper-parameter combinations that [evaluates](./evaluation) each combination of hyper-parameters by means of a given quantification-oriented error metric (e.g., any of the error functions implemented in _qp.error_) and according to a -[sampling generation protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols). +[sampling generation protocol](./protocols). The following is an example (also included in the examples folder) of model selection for quantification: diff --git a/docs/source/wiki/wiki_examples/selected_plots/bin_bias.png b/docs/source/manuals/plots/bin_bias.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/bin_bias.png rename to docs/source/manuals/plots/bin_bias.png diff --git a/docs/source/wiki/wiki_examples/selected_plots/bin_bias_bin_cc.png b/docs/source/manuals/plots/bin_bias_bin_cc.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/bin_bias_bin_cc.png rename to docs/source/manuals/plots/bin_bias_bin_cc.png diff --git a/docs/source/wiki/wiki_examples/selected_plots/bin_bias_cc.png b/docs/source/manuals/plots/bin_bias_cc.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/bin_bias_cc.png rename to docs/source/manuals/plots/bin_bias_cc.png diff --git a/docs/source/wiki/wiki_examples/selected_plots/bin_diag.png b/docs/source/manuals/plots/bin_diag.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/bin_diag.png rename to docs/source/manuals/plots/bin_diag.png diff --git a/docs/source/wiki/wiki_examples/selected_plots/bin_diag_cc.png b/docs/source/manuals/plots/bin_diag_cc.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/bin_diag_cc.png rename to docs/source/manuals/plots/bin_diag_cc.png diff --git a/docs/source/wiki/wiki_examples/selected_plots/err_drift.png b/docs/source/manuals/plots/err_drift.png similarity index 100% rename from docs/source/wiki/wiki_examples/selected_plots/err_drift.png rename to docs/source/manuals/plots/err_drift.png diff --git a/docs/source/wiki/Plotting.md b/docs/source/manuals/plotting.md similarity index 95% rename from docs/source/wiki/Plotting.md rename to docs/source/manuals/plotting.md index 99f3f7e..ec080da 100644 --- a/docs/source/wiki/Plotting.md +++ b/docs/source/manuals/plotting.md @@ -43,7 +43,7 @@ quantification methods across different scenarios showcasing the accuracy of the quantifier in predicting class prevalences for a wide range of prior distributions. This can easily be achieved by means of the -[artificial sampling protocol](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols) +[artificial sampling protocol](./protocols) that is implemented in QuaPy. The following code shows how to perform one simple experiment @@ -113,7 +113,7 @@ are '.png' or '.pdf'). If this path is not provided, then the plot will be shown but not saved. The resulting plot should look like: -![diagonal plot on Kindle](./wiki_examples/selected_plots/bin_diag.png) +![diagonal plot on Kindle](./plots/bin_diag.png) Note that in this case, we are also indicating the training prevalence, which is plotted in the diagonal a as cyan dot. @@ -138,7 +138,7 @@ qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, savepath='./pl and should look like: -![bias plot on Kindle](./wiki_examples/selected_plots/bin_bias.png) +![bias plot on Kindle](./plots/bin_bias.png) The box plots show some interesting facts: * all methods are biased towards the training prevalence but specially @@ -181,7 +181,7 @@ def gen_data(): and the plot should now look like: -![bias plot on IMDb](./wiki_examples/selected_plots/bin_bias_cc.png) +![bias plot on IMDb](./plots/bin_bias_cc.png) which clearly shows a negative bias for CC variants trained on data containing more negatives (i.e., < 50%) and positive biases @@ -195,7 +195,7 @@ To this aim, an argument _nbins_ is passed which indicates how many isometric subintervals to take. For example the following plot is produced for _nbins=3_: -![bias plot on IMDb](./wiki_examples/selected_plots/bin_bias_bin_cc.png) +![bias plot on IMDb](./plots/bin_bias_bin_cc.png) Interestingly enough, the seemingly unbiased estimator (CC at 50%) happens to display a positive bias (or a tendency to overestimate) in cases of low prevalence @@ -205,7 +205,7 @@ and a negative bias (or a tendency to underestimate) in cases of high prevalence Out of curiosity, the diagonal plot for this experiment looks like: -![diag plot on IMDb](./wiki_examples/selected_plots/bin_diag_cc.png) +![diag plot on IMDb](./plots/bin_diag_cc.png) showing pretty clearly the dependency of CC on the prior probabilities of the labeled set it was trained on. @@ -234,7 +234,7 @@ qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, error_name='ae', n_bins=10, savepath='./plots/err_drift.png') ``` -![diag plot on IMDb](./wiki_examples/selected_plots/err_drift.png) +![diag plot on IMDb](./plots/err_drift.png) Note that all methods work reasonably well in cases of low prevalence drift (i.e., any CC-variant is a good quantifier whenever the IID diff --git a/docs/source/wiki/Protocols.md b/docs/source/manuals/protocols.md similarity index 100% rename from docs/source/wiki/Protocols.md rename to docs/source/manuals/protocols.md