cleaning readmes
This commit is contained in:
parent
02b6a0cb05
commit
7f698b511e
|
|
@ -1,8 +1,6 @@
|
|||
Change Log 0.2.0
|
||||
-----------------
|
||||
|
||||
CLEAN TODO-FILE
|
||||
|
||||
- Base code Refactor:
|
||||
- Removing coupling between LabelledCollection and quantification methods; the fit interface changes:
|
||||
def fit(data:LabelledCollection): -> def fit(X, y):
|
||||
|
|
|
|||
40
TODO.txt
40
TODO.txt
|
|
@ -1,53 +1,19 @@
|
|||
Adapt examples; remaining: example 4-onwards
|
||||
not working: 15 (qunfold)
|
||||
|
||||
Solve the warnings issue; right now there is a warning ignore in method/__init__.py:
|
||||
|
||||
Add 'platt' to calib options in EMQ?
|
||||
|
||||
Allow n_prevpoints in APP to be specified by a user-defined grid?
|
||||
|
||||
Update READMEs, wiki, & examples for new fit-predict interface
|
||||
|
||||
Add the fix suggested by Alexander:
|
||||
|
||||
For a more general application, I would maybe first establish a per-class threshold value of plausible prevalence
|
||||
Add the fix suggested by Alexander?
|
||||
"For a more general application, I would maybe first establish a per-class threshold value of plausible prevalence
|
||||
based on the number of actual positives and the required sample size; e.g., for sample_size=100 and actual
|
||||
positives [10, 100, 500] -> [0.1, 1.0, 1.0], meaning that class 0 can be sampled at most at 0.1 prevalence, while
|
||||
the others can be sampled up to 1. prevalence. Then, when a prevalence value is requested, e.g., [0.33, 0.33, 0.33],
|
||||
we may either clip each value and normalize (as you suggest for the extreme case, e.g., [0.1, 0.33, 0.33]/sum) or
|
||||
scale each value by per-class thresholds, i.e., [0.33*0.1, 0.33*1, 0.33*1]/sum.
|
||||
scale each value by per-class thresholds, i.e., [0.33*0.1, 0.33*1, 0.33*1]/sum."
|
||||
- This affects LabelledCollection
|
||||
- This functionality should be accessible via sampling protocols and evaluation functions
|
||||
|
||||
Solve the pre-trained classifier issues. An example is the coptic-codes script I did, which needed a mock_lr to
|
||||
work for having access to classes_; think also the case in which the precomputed outputs are already generated
|
||||
as in the unifying problems code.
|
||||
|
||||
Para quitar el labelledcollection de los métodos:
|
||||
|
||||
- El follón viene por la semántica confusa de fit en agregativos, que recibe 3 parámetros:
|
||||
- data: LabelledCollection, que puede ser:
|
||||
- el training set si hay que entrenar el clasificador
|
||||
- None si no hay que entregar el clasificador
|
||||
- el validation, que entra en conflicto con val_split, si no hay que entrenar clasificador
|
||||
- fit_classifier: dice si hay que entrenar el clasificador o no, y estos cambia la semántica de los otros
|
||||
- val_split: que puede ser:
|
||||
- un número: el número de kfcv, lo cual implica fit_classifier=True y data=todo el training set
|
||||
- una fración en [0,1]: que indica la parte que usamos para validation; implica fit_classifier=True y data=train+val
|
||||
- un labelled collection: el conjunto de validación específico; no implica fit_classifier=True ni False
|
||||
- La forma de quitar la dependencia de los métodos con LabelledCollection debería ser así:
|
||||
- En el constructor se dice si el clasificador que se recibe por parámetro hay que entrenarlo o ya está entrenado;
|
||||
es decir, hay un fit_classifier=True o False.
|
||||
- fit_classifier=True:
|
||||
- data en fit es todo el training incluyendo el validation y todo
|
||||
- val_split:
|
||||
- int: número de folds en kfcv
|
||||
- proporción en [0,1]
|
||||
- fit_classifier=False:
|
||||
|
||||
|
||||
|
||||
- [TODO] document confidence in manuals
|
||||
- [TODO] Test the return_type="index" in protocols and finish the "distributing_samples.py" example
|
||||
- [TODO] Add EDy (an implementation is available at quantificationlib)
|
||||
|
|
|
|||
Loading…
Reference in New Issue