observations and plan of todo things
This commit is contained in:
parent
3d22270a4d
commit
7ee224521a
|
@ -5,7 +5,8 @@ from sklearn.svm import LinearSVC
|
|||
from tqdm import tqdm
|
||||
|
||||
import quapy as qp
|
||||
from quapy.method.aggregative import EMQ, PACC, CC, PCC, MS2, MS
|
||||
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
|
||||
from quapy.method.aggregative import EMQ, PACC, CC, PCC, MS2, MS, ACC
|
||||
from quapy.data import LabelledCollection
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
@ -73,13 +74,7 @@ class Preprocessor:
|
|||
return self.fit(X, y).transform(X)
|
||||
|
||||
|
||||
# cls = LinearSVC()
|
||||
cls = LogisticRegressionCV(class_weight='balanced', Cs=10)
|
||||
q = CC(cls)
|
||||
# q = PCC(cls)
|
||||
# q = PACC(cls)
|
||||
# q = EMQ(cls)
|
||||
# q = MS(cls)
|
||||
|
||||
|
||||
|
||||
# Ate, Xte = load_csv(cens_y)
|
||||
|
@ -97,27 +92,46 @@ trains = get_dataset_by_area(Atr, Xtr, ytr)
|
|||
|
||||
n_area = len(trains)
|
||||
|
||||
results = np.zeros(shape=(n_area, n_area))
|
||||
# cls = LinearSVC()
|
||||
cls = LogisticRegression()
|
||||
# cls = LogisticRegressionCV(class_weight='balanced', Cs=10)
|
||||
# q = CC(cls)
|
||||
# q = PCC(cls)
|
||||
# q = PACC(cls)
|
||||
q = EMQ(cls)
|
||||
# q = MS(cls)
|
||||
#q = MaximumLikelihoodPrevalenceEstimation()
|
||||
|
||||
for i, (Ai, Xi, yi) in tqdm(enumerate(trains), total=n_area):
|
||||
# Xi = preprocessor.fit_transform(Xi)
|
||||
tr = LabelledCollection(Xi, yi)
|
||||
q.fit(tr)
|
||||
len_tr = len(tr)
|
||||
# len_tr = len(big_train)
|
||||
for j, (Aj, Xj, yj) in enumerate(trains):
|
||||
if i==j: continue
|
||||
# Xj = preprocessor.transform(Xj)
|
||||
te = LabelledCollection(Xj, yj)
|
||||
pred_prev = q.quantify(te.X)
|
||||
true_prev = te.prevalence()
|
||||
err = qp.error.mae(true_prev, pred_prev)
|
||||
print(f'{i=} {j=} [#train={len_tr}] true_prev={true_prev[1]:.3f} pred_prev={pred_prev[1]:.3f} {err=:.4f}')
|
||||
results[i,j] = err
|
||||
for q in [CC(cls), PCC(cls), ACC(cls), PACC(cls), EMQ(cls), MLPE()]:
|
||||
|
||||
results = np.zeros(shape=(n_area, n_area))
|
||||
|
||||
print(results)
|
||||
print(f'mean results = {results.mean():.4f}')
|
||||
for i, (Ai, Xi, yi) in tqdm(enumerate(trains), total=n_area):
|
||||
# Xi = preprocessor.fit_transform(Xi)
|
||||
tr = LabelledCollection(Xi, yi)
|
||||
q.fit(tr)
|
||||
len_tr = len(tr)
|
||||
# len_tr = len(big_train)
|
||||
for j, (Aj, Xj, yj) in enumerate(trains):
|
||||
if i==j: continue
|
||||
# Xj = preprocessor.transform(Xj)
|
||||
te = LabelledCollection(Xj, yj)
|
||||
pred_prev = q.quantify(te.X)
|
||||
true_prev = te.prevalence()
|
||||
# qp.environ["SAMPLE_SIZE"] = len(te)
|
||||
# err = qp.error.mrae(true_prev, pred_prev)
|
||||
err = qp.error.mae(true_prev, pred_prev)
|
||||
print(f'{i=} {j=} [#train={len_tr}] true_prev={true_prev[1]:.3f} pred_prev={pred_prev[1]:.3f} {err=:.4f}')
|
||||
results[i,j] = err
|
||||
|
||||
import sys; sys.exit()
|
||||
|
||||
q_name = q.__class__.__name__
|
||||
# print(results)
|
||||
print(f'{q_name} mean results = {results.mean():.4f}')
|
||||
|
||||
results += np.eye(results.shape[0])
|
||||
print(results.min(axis=0).mean())
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue