diff --git a/BayesianKDEy/full_experiments.py b/BayesianKDEy/full_experiments.py index e592214..82876c6 100644 --- a/BayesianKDEy/full_experiments.py +++ b/BayesianKDEy/full_experiments.py @@ -10,7 +10,7 @@ from copy import deepcopy as cp import quapy as qp from BayesianKDEy._bayeisan_kdey import BayesianKDEy from build.lib.quapy.data import LabelledCollection -from quapy.method.aggregative import DistributionMatchingY as DMy, AggregativeQuantifier +from quapy.method.aggregative import DistributionMatchingY as DMy, AggregativeQuantifier, EMQ from quapy.method.base import BinaryQuantifier, BaseQuantifier from quapy.model_selection import GridSearchQ from quapy.data import Dataset @@ -54,6 +54,7 @@ def methods(): quantifier with optimized hyperparameters """ acc_hyper = {} + emq_hyper = {'calib': [None, 'nbvs', 'bcts', 'ts', 'vs']} hdy_hyper = {'nbins': [3,4,5,8,16,32]} kdey_hyper = {'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]} kdey_hyper_clr = {'bandwidth': [0.05, 0.1, 0.5, 1., 2., 5.]} @@ -65,6 +66,8 @@ def methods(): yield 'BootstrapACC', ACC(LR()), acc_hyper, lambda hyper: AggregativeBootstrap(ACC(LR()), n_test_samples=1000, random_state=0), multiclass_method yield 'BayesianACC', ACC(LR()), acc_hyper, lambda hyper: BayesianCC(LR(), mcmc_seed=0), multiclass_method + yield 'BootstrapEMQ', EMQ(LR(), on_calib_error='backup'), emq_hyper, lambda hyper: AggregativeBootstrap(EMQ(LR(), on_calib_error='backup'), n_test_samples=1000, random_state=0), multiclass_method + yield 'BootstrapHDy', DMy(LR()), hdy_hyper, lambda hyper: AggregativeBootstrap(DMy(LR(), **hyper), n_test_samples=1000, random_state=0), multiclass_method yield 'BayesianHDy', DMy(LR()), hdy_hyper, lambda hyper: PQ(LR(), stan_seed=0, **hyper), only_binary