diff --git a/KDEy/kdey_devel.py b/KDEy/kdey_devel.py index 0506fde..958c870 100644 --- a/KDEy/kdey_devel.py +++ b/KDEy/kdey_devel.py @@ -308,41 +308,35 @@ class KDEyMLauto2(KDEyML): prot = UPP(val, sample_size=self.reduction, repeats=repeats, random_state=self.random_state) if self.target == 'likelihood+': - def neg_loglikelihood_band_(bandwidth): - bandwidth=bandwidth[0] + + def neg_loglikelihood_bandwidth(bandwidth): mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth) loss_accum = 0 for (sample, prevtrue) in prot(): - test_densities2 = [self.pdf(kde_i, sample) for kde_i in mix_densities] + test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities] def neg_loglikelihood_prev(prev): - test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities2)) + test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities)) test_loglikelihood = np.log(test_mixture_likelihood + epsilon) nll = -np.sum(test_loglikelihood) - # print(f'\t\tprev={F.strprev(prev)} got {nll=}') return nll - init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,)) pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True) # print(f'\t\tprev={F.strprev(pred_prev)} (true={F.strprev(prev)}) got {neglikelihood=}') loss_accum += neglikelihood - - print(f'\t{bandwidth=:.8f} got {loss_accum=:.8f}') return loss_accum - bounds = [tuple((0.0001, 0.2))] - init_bandwidth = 0.1 - r = optimize.minimize(neg_loglikelihood_band_, x0=[init_bandwidth], method='Nelder-Mead', bounds=bounds, tol=1) - best_band = r.x[0] - best_loss_val = r.fun + r = optimize.minimize_scalar(neg_loglikelihood_bandwidth, bounds=(0.00001, 0.2)) + best_band = r.x + best_loss_value = r.fun nit = r.nit - assert r.success, 'Process did not converge!' + # assert r.success, 'Process did not converge!' #found bandwidth=0.00994664 after nit=3 iterations loss_val=-212247.24305) else: best_band = None - best_loss_val = None + best_loss_value = None init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,)) for bandwidth in np.logspace(-4, np.log10(0.2), 20): mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth) @@ -364,12 +358,12 @@ class KDEyMLauto2(KDEyML): pred_prev, loss_val = optim_minimize(loss_fn, init_prev, return_loss=True) loss_accum += loss_val - if best_loss_val is None or loss_accum < best_loss_val: - best_loss_val = loss_accum + if best_loss_value is None or loss_accum < best_loss_value: + best_loss_value = loss_accum best_band = bandwidth nit=20 - print(f'found bandwidth={best_band:.8f} after {nit=} iterations loss_val={best_loss_val:.5f})') + print(f'found bandwidth={best_band:.8f} after {nit=} iterations loss_val={best_loss_value:.5f})') self.bandwidth_ = best_band diff --git a/KDEy/quantification_evaluation.py b/KDEy/quantification_evaluation.py index bfe8f58..06d8b7f 100644 --- a/KDEy/quantification_evaluation.py +++ b/KDEy/quantification_evaluation.py @@ -39,7 +39,7 @@ METHODS = [ ('KDEy-ML-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)), ('KDEy-ML-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)), ('KDEy-ML-autoLike', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood'), wrap_hyper(logreg_grid)), - # ('KDEy-ML-autoLike+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood+'), wrap_hyper(logreg_grid)), <-- no funciona + ('KDEy-ML-autoLike+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood+'), wrap_hyper(logreg_grid)), ('KDEy-ML-autoAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae'), wrap_hyper(logreg_grid)), ('KDEy-ML-autoRAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae'), wrap_hyper(logreg_grid)), ] @@ -55,7 +55,7 @@ TRANSDUCTIVE_METHODS = [ #('TKDEy-ML', KDEyMLauto(newLR()), None), # ('TKDEy-MLboth', KDEyMLauto(newLR(), optim='both'), None), # ('TKDEy-MLbothfine', KDEyMLauto(newLR(), optim='both_fine'), None), - ('TKDEy-ML2', KDEyMLauto(newLR(), optim='two_steps'), None), + # ('TKDEy-ML2', KDEyMLauto(newLR(), optim='two_steps'), None), # ('TKDEy-MLike', KDEyMLauto(newLR(), optim='max_likelihood'), None), # ('TKDEy-MLike2', KDEyMLauto(newLR(), optim='max_likelihood2'), None), #('TKDEy-ML3', KDEyMLauto(newLR()), None),