integrating more uci-multiclass datasets
This commit is contained in:
parent
3095d7092c
commit
4abec6629b
|
@ -29,12 +29,17 @@ def newLR():
|
||||||
|
|
||||||
|
|
||||||
def calibratedLR():
|
def calibratedLR():
|
||||||
return CalibratedClassifierCV(LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1))
|
return CalibratedClassifierCV(newLR())
|
||||||
|
|
||||||
|
|
||||||
__C_range = np.logspace(-3, 3, 7)
|
__C_range = np.logspace(-3, 3, 7)
|
||||||
lr_params = {'classifier__C': __C_range, 'classifier__class_weight': [None, 'balanced']}
|
lr_params = {
|
||||||
svmperf_params = {'classifier__C': __C_range}
|
'classifier__C': __C_range,
|
||||||
|
'classifier__class_weight': [None, 'balanced']
|
||||||
|
}
|
||||||
|
svmperf_params = {
|
||||||
|
'classifier__C': __C_range
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def quantification_models():
|
def quantification_models():
|
||||||
|
|
|
@ -0,0 +1,113 @@
|
||||||
|
import pickle
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
|
||||||
|
import quapy as qp
|
||||||
|
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||||
|
from quapy.model_selection import GridSearchQ
|
||||||
|
from quapy.protocol import UPP
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
SEED = 1
|
||||||
|
|
||||||
|
|
||||||
|
def newLR():
|
||||||
|
return LogisticRegression(max_iter=3000)
|
||||||
|
|
||||||
|
# typical hyperparameters explored for Logistic Regression
|
||||||
|
logreg_grid = {
|
||||||
|
'C': np.logspace(-3, 3, 7),
|
||||||
|
'class_weight': ['balanced', None]
|
||||||
|
}
|
||||||
|
|
||||||
|
def wrap_hyper(classifier_hyper_grid:dict):
|
||||||
|
return {'classifier__'+k:v for k, v in classifier_hyper_grid.items()}
|
||||||
|
|
||||||
|
METHODS = [
|
||||||
|
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
|
||||||
|
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
|
||||||
|
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.linspace(0.01, 0.2, 20)}}),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def show_results(result_path):
|
||||||
|
import pandas as pd
|
||||||
|
df = pd.read_csv(result_path+'.csv', sep='\t')
|
||||||
|
pd.set_option('display.max_columns', None)
|
||||||
|
pd.set_option('display.max_rows', None)
|
||||||
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"], margins=True)
|
||||||
|
print(pv)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
qp.environ['SAMPLE_SIZE'] = 500
|
||||||
|
qp.environ['N_JOBS'] = -1
|
||||||
|
n_bags_val = 250
|
||||||
|
n_bags_test = 1000
|
||||||
|
result_dir = f'results/ucimulti'
|
||||||
|
|
||||||
|
os.makedirs(result_dir, exist_ok=True)
|
||||||
|
|
||||||
|
global_result_path = f'{result_dir}/allmethods'
|
||||||
|
with open(global_result_path + '.csv', 'wt') as csv:
|
||||||
|
csv.write(f'Method\tDataset\tMAE\tMRAE\n')
|
||||||
|
|
||||||
|
for method_name, quantifier, param_grid in METHODS:
|
||||||
|
|
||||||
|
print('Init method', method_name)
|
||||||
|
|
||||||
|
with open(global_result_path + '.csv', 'at') as csv:
|
||||||
|
|
||||||
|
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS[:5]:
|
||||||
|
|
||||||
|
if dataset in ['covertype', 'diabetes']:
|
||||||
|
continue
|
||||||
|
|
||||||
|
print('init', dataset)
|
||||||
|
|
||||||
|
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||||
|
|
||||||
|
if os.path.exists(local_result_path):
|
||||||
|
print(f'result file {local_result_path} already exist; skipping')
|
||||||
|
report = qp.util.load_report(local_result_path)
|
||||||
|
|
||||||
|
else:
|
||||||
|
with qp.util.temp_seed(SEED):
|
||||||
|
|
||||||
|
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
||||||
|
|
||||||
|
# model selection
|
||||||
|
train, test = data.train_test
|
||||||
|
train, val = train.split_stratified(random_state=SEED)
|
||||||
|
|
||||||
|
protocol = UPP(val, repeats=n_bags_val)
|
||||||
|
modsel = GridSearchQ(
|
||||||
|
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
modsel.fit(train)
|
||||||
|
|
||||||
|
print(f'best params {modsel.best_params_}')
|
||||||
|
print(f'best score {modsel.best_score_}')
|
||||||
|
|
||||||
|
quantifier = modsel.best_model()
|
||||||
|
except:
|
||||||
|
print('something went wrong... trying to fit the default model')
|
||||||
|
quantifier.fit(train)
|
||||||
|
|
||||||
|
protocol = UPP(test, repeats=n_bags_test)
|
||||||
|
report = qp.evaluation.evaluation_report(
|
||||||
|
quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True
|
||||||
|
)
|
||||||
|
report.to_csv(local_result_path)
|
||||||
|
|
||||||
|
means = report.mean()
|
||||||
|
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')
|
||||||
|
csv.flush()
|
||||||
|
|
||||||
|
show_results(global_result_path)
|
|
@ -591,7 +591,7 @@ def fetch_UCIBinaryLabelledCollection(dataset_name, data_home=None, verbose=Fals
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False, min_ipc=100) -> Dataset:
|
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, min_class_support=100, verbose=False) -> Dataset:
|
||||||
"""
|
"""
|
||||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
|
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
|
||||||
|
|
||||||
|
@ -614,16 +614,16 @@ def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, ver
|
||||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||||
~/quay_data/ directory)
|
~/quay_data/ directory)
|
||||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||||
|
:param min_class_support: minimum number of istances per class. Classes with fewer instances
|
||||||
|
are discarded (deafult is 100)
|
||||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||||
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
|
|
||||||
(deafult is 100)
|
|
||||||
:return: a :class:`quapy.data.base.Dataset` instance
|
:return: a :class:`quapy.data.base.Dataset` instance
|
||||||
"""
|
"""
|
||||||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose, min_ipc)
|
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, min_class_support, verbose=verbose)
|
||||||
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
|
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
|
||||||
|
|
||||||
|
|
||||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False, min_ipc=100) -> LabelledCollection:
|
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, min_class_support=100, verbose=False) -> LabelledCollection:
|
||||||
"""
|
"""
|
||||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
||||||
|
|
||||||
|
@ -646,9 +646,9 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
||||||
:param data_home: specify the quapy home directory where the dataset will be dumped (leave empty to use the default
|
:param data_home: specify the quapy home directory where the dataset will be dumped (leave empty to use the default
|
||||||
~/quay_data/ directory)
|
~/quay_data/ directory)
|
||||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||||
|
:param min_class_support: minimum number of istances per class. Classes with fewer instances
|
||||||
|
are discarded (deafult is 100)
|
||||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||||
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
|
|
||||||
(deafult is 100)
|
|
||||||
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
||||||
"""
|
"""
|
||||||
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
||||||
|
@ -736,13 +736,20 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
||||||
file = join(data_home, 'uci_multiclass', dataset_name+'.pkl')
|
file = join(data_home, 'uci_multiclass', dataset_name+'.pkl')
|
||||||
|
|
||||||
def download(id, name):
|
def download(id, name):
|
||||||
data = fetch_ucirepo(id=id)
|
df = fetch_ucirepo(id=id)
|
||||||
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
|
|
||||||
# classes represented as arrays are transformed to tuples to treat them as signle objects
|
df.data.features = pd.get_dummies(df.data.features, drop_first=True)
|
||||||
|
|
||||||
|
X, y = df.data.features.to_numpy(), df.data.targets.to_numpy().squeeze()
|
||||||
|
# classes represented as arrays are transformed to tuples to treat them as single objects
|
||||||
if name == 'support2':
|
if name == 'support2':
|
||||||
y[:, 2] = np.fromiter((str(elm) for elm in y[:, 2]), dtype='object')
|
y[:, 2] = np.fromiter((str(elm) for elm in y[:, 2]), dtype='object')
|
||||||
|
raise ValueError('this is support 2')
|
||||||
|
|
||||||
if y.ndim > 1:
|
if y.ndim > 1:
|
||||||
y = np.fromiter((tuple(elm) for elm in y), dtype='object')
|
y = np.fromiter((tuple(elm) for elm in y), dtype='object')
|
||||||
|
raise ValueError('more than one y')
|
||||||
|
|
||||||
classes = np.sort(np.unique(y))
|
classes = np.sort(np.unique(y))
|
||||||
y = np.searchsorted(classes, y)
|
y = np.searchsorted(classes, y)
|
||||||
return LabelledCollection(X, y)
|
return LabelledCollection(X, y)
|
||||||
|
@ -759,11 +766,11 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
||||||
return LabelledCollection(X, y)
|
return LabelledCollection(X, y)
|
||||||
|
|
||||||
data = pickled_resource(file, download, identifier, dataset_name)
|
data = pickled_resource(file, download, identifier, dataset_name)
|
||||||
data = filter_classes(data, min_ipc)
|
data = filter_classes(data, min_class_support)
|
||||||
if data.n_classes <= 2:
|
if data.n_classes <= 2:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f'Dataset {dataset_name} has too few valid classes to be multiclass with {min_ipc=}. '
|
f'After filtering out classes with less than {min_class_support=} instances, the dataset {dataset_name} '
|
||||||
'Try a lower value for min_ipc.'
|
f'is no longer multiclass. Try a reducing this value.'
|
||||||
)
|
)
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
|
@ -848,7 +855,6 @@ def fetch_lequa2022(task, data_home=None):
|
||||||
return train, val_gen, test_gen
|
return train, val_gen, test_gen
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None):
|
def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None):
|
||||||
"""
|
"""
|
||||||
Loads the IFCB dataset for quantification from `Zenodo <https://zenodo.org/records/10036244>`_ (for more
|
Loads the IFCB dataset for quantification from `Zenodo <https://zenodo.org/records/10036244>`_ (for more
|
||||||
|
|
|
@ -21,7 +21,7 @@ class QuaNetTrainer(BaseQuantifier):
|
||||||
Example:
|
Example:
|
||||||
|
|
||||||
>>> import quapy as qp
|
>>> import quapy as qp
|
||||||
>>> from quapy.method.meta import QuaNet
|
>>> from quapy.method_name.meta import QuaNet
|
||||||
>>> from quapy.classification.neural import NeuralClassifierTrainer, CNNnet
|
>>> from quapy.classification.neural import NeuralClassifierTrainer, CNNnet
|
||||||
>>>
|
>>>
|
||||||
>>> # use samples of 100 elements
|
>>> # use samples of 100 elements
|
||||||
|
|
|
@ -6,6 +6,9 @@ import pickle
|
||||||
import urllib
|
import urllib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from contextlib import ExitStack
|
from contextlib import ExitStack
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -246,6 +249,28 @@ def _check_sample_size(sample_size):
|
||||||
return sample_size
|
return sample_size
|
||||||
|
|
||||||
|
|
||||||
|
def load_report(path, as_dict=False):
|
||||||
|
def str2prev_arr(strprev):
|
||||||
|
within = strprev.strip('[]').split()
|
||||||
|
float_list = [float(p) for p in within]
|
||||||
|
float_list[-1] = 1. - sum(float_list[:-1])
|
||||||
|
return np.asarray(float_list)
|
||||||
|
|
||||||
|
df = pd.read_csv(path, index_col=0)
|
||||||
|
df['true-prev'] = df['true-prev'].apply(str2prev_arr)
|
||||||
|
df['estim-prev'] = df['estim-prev'].apply(str2prev_arr)
|
||||||
|
if as_dict:
|
||||||
|
d = {}
|
||||||
|
for col in df.columns.values:
|
||||||
|
vals = df[col].values
|
||||||
|
if col in ['true-prev', 'estim-prev']:
|
||||||
|
vals = np.vstack(vals)
|
||||||
|
d[col] = vals
|
||||||
|
return d
|
||||||
|
else:
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
class EarlyStop:
|
class EarlyStop:
|
||||||
"""
|
"""
|
||||||
A class implementing the early-stopping condition typically used for training neural networks.
|
A class implementing the early-stopping condition typically used for training neural networks.
|
||||||
|
|
Loading…
Reference in New Issue