model selection for kde in a past TREC dataset
This commit is contained in:
parent
bc656fe207
commit
36c53639d7
|
@ -64,16 +64,21 @@ class RetrievedSamples:
|
||||||
|
|
||||||
for file in self._list_queries():
|
for file in self._list_queries():
|
||||||
|
|
||||||
|
# print(file)
|
||||||
|
|
||||||
# loads the training sample
|
# loads the training sample
|
||||||
train_df = pd.read_json(file)
|
train_df = pd.read_json(file)
|
||||||
Xtr, ytr, score_tr = get_text_label_score(train_df, class_name, vectorizer, filter_classes=self.classes)
|
if len(train_df) == 0:
|
||||||
|
print('empty dataframe: ', file)
|
||||||
|
else:
|
||||||
|
Xtr, ytr, score_tr = get_text_label_score(train_df, class_name, vectorizer, filter_classes=self.classes)
|
||||||
|
|
||||||
# loads the test sample
|
# loads the test sample
|
||||||
query_id = self._get_query_id_from_path(file)
|
query_id = self._get_query_id_from_path(file)
|
||||||
sel_df = tests_df[tests_df.qid == int(query_id)]
|
sel_df = tests_df[tests_df.qid == int(query_id)]
|
||||||
Xte, yte, score_te = get_text_label_score(sel_df, class_name, vectorizer, filter_classes=self.classes)
|
Xte, yte, score_te = get_text_label_score(sel_df, class_name, vectorizer, filter_classes=self.classes)
|
||||||
|
|
||||||
yield (Xtr, ytr, score_tr), (Xte, yte, score_te)
|
yield (Xtr, ytr, score_tr), (Xte, yte, score_te)
|
||||||
|
|
||||||
def _list_queries(self):
|
def _list_queries(self):
|
||||||
return sorted(glob(join(self.class_home, 'training_Query*200SPLIT.json')))
|
return sorted(glob(join(self.class_home, 'training_Query*200SPLIT.json')))
|
||||||
|
|
|
@ -51,9 +51,9 @@ To evaluate our approach, I have executed the queries on the test split. You can
|
||||||
def methods(classifier, class_name):
|
def methods(classifier, class_name):
|
||||||
|
|
||||||
kde_param = {
|
kde_param = {
|
||||||
'continent': 0.18,
|
'continent': 0.01,
|
||||||
'gender': 0.12,
|
'gender': 0.005,
|
||||||
'years_category':0.09
|
'years_category':0.03
|
||||||
}
|
}
|
||||||
|
|
||||||
yield ('Naive', Naive())
|
yield ('Naive', Naive())
|
||||||
|
@ -76,13 +76,14 @@ def methods(classifier, class_name):
|
||||||
# yield ('KDE03', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.03))
|
# yield ('KDE03', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||||
# yield ('KDE-silver', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth='silverman'))
|
# yield ('KDE-silver', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth='silverman'))
|
||||||
# yield ('KDE-scott', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth='scott'))
|
# yield ('KDE-scott', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth='scott'))
|
||||||
yield ('KDE-opt', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=kde_param[class_name]))
|
yield ('KDEy-ML', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=kde_param[class_name]))
|
||||||
|
# yield ('KDE005', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.005))
|
||||||
yield ('KDE01', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.01))
|
yield ('KDE01', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.01))
|
||||||
yield ('KDE02', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.02))
|
# yield ('KDE02', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.02))
|
||||||
yield ('KDE03', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.03))
|
# yield ('KDE03', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||||
yield ('KDE04', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.04))
|
# yield ('KDE04', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.04))
|
||||||
yield ('KDE05', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.05))
|
# yield ('KDE05', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.05))
|
||||||
yield ('KDE07', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.07))
|
# yield ('KDE07', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.07))
|
||||||
# yield ('KDE10', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.10))
|
# yield ('KDE10', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.10))
|
||||||
|
|
||||||
|
|
||||||
|
@ -176,63 +177,64 @@ def run_experiment():
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
data_home = 'data'
|
|
||||||
|
|
||||||
HALF=True
|
|
||||||
exp_posfix = '_half'
|
|
||||||
|
|
||||||
method_names = [name for name, *other in methods(None, 'continent')]
|
|
||||||
|
|
||||||
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
|
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
|
||||||
|
|
||||||
for class_name in ['gender', 'continent', 'years_category']: # 'relative_pageviews_category', 'num_sitelinks_category']:
|
if __name__ == '__main__':
|
||||||
tables_mae, tables_mrae = [], []
|
data_home = 'data'
|
||||||
|
|
||||||
benchmarks = [benchmark_name(class_name, k) for k in Ks]
|
HALF=True
|
||||||
|
exp_posfix = '_half'
|
||||||
|
|
||||||
for data_size in ['10K', '50K', '100K', '500K', '1M', 'FULL']:
|
method_names = [name for name, *other in methods(None, 'continent')]
|
||||||
|
|
||||||
table_mae = Table(name=f'{class_name}-{data_size}-mae', benchmarks=benchmarks, methods=method_names)
|
for class_name in ['gender', 'continent', 'years_category']: # 'relative_pageviews_category', 'num_sitelinks_category']:
|
||||||
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks, methods=method_names)
|
tables_mae, tables_mrae = [], []
|
||||||
table_mae.format.mean_prec = 5
|
|
||||||
table_mae.format.remove_zero = True
|
|
||||||
table_mae.format.color_mode = 'global'
|
|
||||||
|
|
||||||
tables_mae.append(table_mae)
|
benchmarks = [benchmark_name(class_name, k) for k in Ks]
|
||||||
tables_mrae.append(table_mrae)
|
|
||||||
|
|
||||||
class_home = join(data_home, class_name, data_size)
|
for data_size in ['10K', '50K', '100K', '500K', '1M', 'FULL']:
|
||||||
# train_data_path = join(class_home, 'classifier_training.json')
|
|
||||||
# classifier_path = join('classifiers', data_size, f'classifier_{class_name}.pkl')
|
|
||||||
train_data_path = join(data_home, class_name, 'FULL', 'classifier_training.json') # <-------- fixed classifier
|
|
||||||
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}.pkl') # <------------ fixed classifier
|
|
||||||
test_rankings_path = join(data_home, 'testRanking_Results.json')
|
|
||||||
results_home = join('results'+exp_posfix, class_name, data_size)
|
|
||||||
|
|
||||||
tfidf, classifier_trained = qp.util.pickled_resource(classifier_path, train_classifier, train_data_path)
|
table_mae = Table(name=f'{class_name}-{data_size}-mae', benchmarks=benchmarks, methods=method_names)
|
||||||
|
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks, methods=method_names)
|
||||||
|
table_mae.format.mean_prec = 5
|
||||||
|
table_mae.format.remove_zero = True
|
||||||
|
table_mae.format.color_mode = 'global'
|
||||||
|
|
||||||
experiment_prot = RetrievedSamples(
|
tables_mae.append(table_mae)
|
||||||
class_home,
|
tables_mrae.append(table_mrae)
|
||||||
test_rankings_path,
|
|
||||||
vectorizer=tfidf,
|
|
||||||
class_name=class_name,
|
|
||||||
classes=classifier_trained.classes_
|
|
||||||
)
|
|
||||||
for method_name, quantifier in methods(classifier_trained, class_name):
|
|
||||||
|
|
||||||
results_path = join(results_home, method_name + '.pkl')
|
class_home = join(data_home, class_name, data_size)
|
||||||
if os.path.exists(results_path):
|
# train_data_path = join(class_home, 'classifier_training.json')
|
||||||
print(f'Method {method_name=} already computed')
|
# classifier_path = join('classifiers', data_size, f'classifier_{class_name}.pkl')
|
||||||
results = pickle.load(open(results_path, 'rb'))
|
train_data_path = join(data_home, class_name, 'FULL', 'classifier_training.json') # <-------- fixed classifier
|
||||||
else:
|
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}.pkl') # <------------ fixed classifier
|
||||||
results = run_experiment()
|
test_rankings_path = join(data_home, 'testRanking_Results.json')
|
||||||
|
results_home = join('results'+exp_posfix, class_name, data_size)
|
||||||
|
|
||||||
os.makedirs(Path(results_path).parent, exist_ok=True)
|
tfidf, classifier_trained = qp.util.pickled_resource(classifier_path, train_classifier, train_data_path)
|
||||||
pickle.dump(results, open(results_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
|
||||||
|
|
||||||
for k in Ks:
|
experiment_prot = RetrievedSamples(
|
||||||
table_mae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mae'][k])
|
class_home,
|
||||||
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
|
test_rankings_path,
|
||||||
|
vectorizer=tfidf,
|
||||||
|
class_name=class_name,
|
||||||
|
classes=classifier_trained.classes_
|
||||||
|
)
|
||||||
|
for method_name, quantifier in methods(classifier_trained, class_name):
|
||||||
|
|
||||||
|
results_path = join(results_home, method_name + '.pkl')
|
||||||
|
if os.path.exists(results_path):
|
||||||
|
print(f'Method {method_name=} already computed')
|
||||||
|
results = pickle.load(open(results_path, 'rb'))
|
||||||
|
else:
|
||||||
|
results = run_experiment()
|
||||||
|
|
||||||
|
os.makedirs(Path(results_path).parent, exist_ok=True)
|
||||||
|
pickle.dump(results, open(results_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||||
|
|
||||||
|
for k in Ks:
|
||||||
|
table_mae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mae'][k])
|
||||||
|
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
|
||||||
|
|
||||||
# Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mae+tables_mrae)
|
# Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mae+tables_mrae)
|
||||||
Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mrae)
|
Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mrae)
|
||||||
|
|
|
@ -0,0 +1,161 @@
|
||||||
|
import os.path
|
||||||
|
import pickle
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.svm import LinearSVC
|
||||||
|
|
||||||
|
import quapy as qp
|
||||||
|
from Retrieval.commons import RetrievedSamples, load_sample
|
||||||
|
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
|
||||||
|
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||||
|
from quapy.data.base import LabelledCollection
|
||||||
|
|
||||||
|
from os.path import join
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from result_table.src.table import Table
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def methods(classifier, class_name):
|
||||||
|
yield ('KDE001', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.001))
|
||||||
|
yield ('KDE005', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.005))
|
||||||
|
yield ('KDE01', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.01))
|
||||||
|
yield ('KDE02', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.02))
|
||||||
|
yield ('KDE03', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.03))
|
||||||
|
yield ('KDE04', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.04))
|
||||||
|
yield ('KDE05', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.05))
|
||||||
|
yield ('KDE07', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.07))
|
||||||
|
yield ('KDE10', KDEyML(classifier, val_split=5, n_jobs=-1, bandwidth=0.10))
|
||||||
|
|
||||||
|
def reduceAtK(data: LabelledCollection, k):
|
||||||
|
# if k > len(data):
|
||||||
|
# print(f'[warning] {k=}>{len(data)=}')
|
||||||
|
X, y = data.Xy
|
||||||
|
X = X[:k]
|
||||||
|
y = y[:k]
|
||||||
|
return LabelledCollection(X, y, classes=data.classes_)
|
||||||
|
|
||||||
|
|
||||||
|
def run_experiment():
|
||||||
|
results = {
|
||||||
|
'mae': {k: [] for k in Ks},
|
||||||
|
'mrae': {k: [] for k in Ks}
|
||||||
|
}
|
||||||
|
|
||||||
|
pbar = tqdm(experiment_prot(), total=experiment_prot.total())
|
||||||
|
for train, test in pbar:
|
||||||
|
Xtr, ytr, score_tr = train
|
||||||
|
Xte, yte, score_te = test
|
||||||
|
|
||||||
|
if HALF:
|
||||||
|
n = len(ytr) // 2
|
||||||
|
train_col = LabelledCollection(Xtr[:n], ytr[:n], classes=classifier_trained.classes_)
|
||||||
|
else:
|
||||||
|
train_col = LabelledCollection(Xtr, ytr, classes=classifier_trained.classes_)
|
||||||
|
|
||||||
|
if method_name not in ['Naive', 'NaiveQuery']:
|
||||||
|
quantifier.fit(train_col, val_split=train_col, fit_classifier=False)
|
||||||
|
elif method_name == 'Naive':
|
||||||
|
quantifier.fit(train_col)
|
||||||
|
|
||||||
|
test_col = LabelledCollection(Xte, yte, classes=classifier_trained.classes_)
|
||||||
|
for k in Ks:
|
||||||
|
test_k = reduceAtK(test_col, k)
|
||||||
|
if method_name == 'NaiveQuery':
|
||||||
|
train_k = reduceAtK(train_col, k)
|
||||||
|
quantifier.fit(train_k)
|
||||||
|
|
||||||
|
estim_prev = quantifier.quantify(test_k.instances)
|
||||||
|
|
||||||
|
mae = qp.error.mae(test_k.prevalence(), estim_prev)
|
||||||
|
mrae = qp.error.mrae(test_k.prevalence(), estim_prev, eps=(1. / (2 * k)))
|
||||||
|
|
||||||
|
results['mae'][k].append(mae)
|
||||||
|
results['mrae'][k].append(mrae)
|
||||||
|
|
||||||
|
pbar.set_description(f'{method_name}')
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def benchmark_name(class_name, k):
|
||||||
|
scape_class_name = class_name.replace('_', '\_')
|
||||||
|
return f'{scape_class_name}@{k}'
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
data_home = 'data-modsel'
|
||||||
|
|
||||||
|
HALF=True
|
||||||
|
exp_posfix = '_half_modsel'
|
||||||
|
|
||||||
|
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
|
||||||
|
|
||||||
|
method_names = [m for m, *_ in methods(None, None)]
|
||||||
|
|
||||||
|
dir_names={
|
||||||
|
'gender': '100K_GENDER_TREC21_QUERIES/100K-NEW-QUERIES',
|
||||||
|
'continent': '100K_CONT_TREC21_QUERIES/100K-NEW-QUERIES',
|
||||||
|
'years_category': '100K_YEARS_TREC21_QUERIES/100K-NEW-QUERIES'
|
||||||
|
}
|
||||||
|
|
||||||
|
for class_name in ['gender', 'continent', 'years_category']: # 'relative_pageviews_category', 'num_sitelinks_category']:
|
||||||
|
tables_mae, tables_mrae = [], []
|
||||||
|
|
||||||
|
benchmarks = [benchmark_name(class_name, k) for k in Ks]
|
||||||
|
|
||||||
|
for data_size in ['100K']:
|
||||||
|
|
||||||
|
table_mae = Table(name=f'{class_name}-{data_size}-mae', benchmarks=benchmarks, methods=method_names)
|
||||||
|
table_mrae = Table(name=f'{class_name}-{data_size}-mrae', benchmarks=benchmarks, methods=method_names)
|
||||||
|
table_mae.format.mean_prec = 5
|
||||||
|
table_mae.format.remove_zero = True
|
||||||
|
table_mae.format.color_mode = 'global'
|
||||||
|
|
||||||
|
tables_mae.append(table_mae)
|
||||||
|
tables_mrae.append(table_mrae)
|
||||||
|
|
||||||
|
class_home = join(data_home, dir_names[class_name])
|
||||||
|
classifier_path = join('classifiers', 'FULL', f'classifier_{class_name}.pkl') # <------------ fixed classifier
|
||||||
|
test_rankings_path = join(data_home, 'testRanking-TREC21-Queries_Results.json')
|
||||||
|
results_home = join('results'+exp_posfix, class_name, data_size)
|
||||||
|
|
||||||
|
tfidf, classifier_trained = pickle.load(open(classifier_path, 'rb'))
|
||||||
|
|
||||||
|
experiment_prot = RetrievedSamples(
|
||||||
|
class_home,
|
||||||
|
test_rankings_path,
|
||||||
|
vectorizer=tfidf,
|
||||||
|
class_name=class_name,
|
||||||
|
classes=classifier_trained.classes_
|
||||||
|
)
|
||||||
|
for method_name, quantifier in methods(classifier_trained, class_name):
|
||||||
|
|
||||||
|
results_path = join(results_home, method_name + '.pkl')
|
||||||
|
if os.path.exists(results_path):
|
||||||
|
print(f'Method {method_name=} already computed')
|
||||||
|
results = pickle.load(open(results_path, 'rb'))
|
||||||
|
else:
|
||||||
|
results = run_experiment()
|
||||||
|
|
||||||
|
os.makedirs(Path(results_path).parent, exist_ok=True)
|
||||||
|
pickle.dump(results, open(results_path, 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||||
|
|
||||||
|
for k in Ks:
|
||||||
|
table_mae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mae'][k])
|
||||||
|
table_mrae.add(benchmark=benchmark_name(class_name, k), method=method_name, v=results['mrae'][k])
|
||||||
|
|
||||||
|
# Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mae+tables_mrae)
|
||||||
|
Table.LatexPDF(f'./latex{exp_posfix}/{class_name}{exp_posfix}.pdf', tables=tables_mrae)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,102 @@
|
||||||
|
import os.path
|
||||||
|
import pickle
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.svm import LinearSVC
|
||||||
|
|
||||||
|
import quapy as qp
|
||||||
|
from Retrieval.commons import RetrievedSamples, load_sample
|
||||||
|
from Retrieval.experiments import methods
|
||||||
|
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as Naive
|
||||||
|
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC, KDEyML
|
||||||
|
from quapy.data.base import LabelledCollection
|
||||||
|
|
||||||
|
from os.path import join
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from result_table.src.table import Table
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_name(class_name, k):
|
||||||
|
scape_class_name = class_name.replace('_', '\_')
|
||||||
|
return f'{scape_class_name}@{k}'
|
||||||
|
|
||||||
|
|
||||||
|
data_home = 'data'
|
||||||
|
|
||||||
|
HALF=True
|
||||||
|
exp_posfix = '_half'
|
||||||
|
|
||||||
|
method_names = [name for name, *other in methods(None, 'continent')]
|
||||||
|
|
||||||
|
Ks = [5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]
|
||||||
|
|
||||||
|
for class_name in ['gender', 'continent', 'years_category']: # 'relative_pageviews_category', 'num_sitelinks_category']:
|
||||||
|
|
||||||
|
benchmarks = [benchmark_name(class_name, k) for k in Ks]
|
||||||
|
|
||||||
|
for data_size in ['10K', '50K', '100K', '500K', '1M', 'FULL']:
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
|
||||||
|
class_home = join(data_home, class_name, data_size)
|
||||||
|
test_rankings_path = join(data_home, 'testRanking_Results.json')
|
||||||
|
results_home = join('results'+exp_posfix, class_name, data_size)
|
||||||
|
|
||||||
|
max_mean = None
|
||||||
|
for method_name in method_names:
|
||||||
|
|
||||||
|
results_path = join(results_home, method_name + '.pkl')
|
||||||
|
try:
|
||||||
|
results = pickle.load(open(results_path, 'rb'))
|
||||||
|
except Exception as e:
|
||||||
|
print(f'missing result {results}', e)
|
||||||
|
|
||||||
|
for err in ['mrae']:
|
||||||
|
means, stds = [], []
|
||||||
|
for k in Ks:
|
||||||
|
values = results[err][k]
|
||||||
|
means.append(np.mean(values))
|
||||||
|
stds.append(np.std(values))
|
||||||
|
|
||||||
|
means = np.asarray(means)
|
||||||
|
stds = np.asarray(stds) #/ np.sqrt(len(stds))
|
||||||
|
|
||||||
|
if max_mean is None:
|
||||||
|
max_mean = np.max(means)
|
||||||
|
else:
|
||||||
|
max_mean = max(max_mean, np.max(means))
|
||||||
|
|
||||||
|
line = ax.plot(Ks, means, 'o-', label=method_name, color=None)
|
||||||
|
color = line[-1].get_color()
|
||||||
|
# ax.fill_between(Ks, means - stds, means + stds, alpha=0.3, color=color)
|
||||||
|
|
||||||
|
ax.set_xlabel('k')
|
||||||
|
ax.set_ylabel(err.upper())
|
||||||
|
ax.set_title(f'{class_name} from {data_size}')
|
||||||
|
ax.set_ylim([0, max_mean])
|
||||||
|
|
||||||
|
ax.legend()
|
||||||
|
|
||||||
|
# plt.show()
|
||||||
|
os.makedirs(f'plots/results/{class_name}', exist_ok=True)
|
||||||
|
plotpath = f'plots/results/{class_name}/{data_size}_{err}.pdf'
|
||||||
|
print(f'saving plot in {plotpath}')
|
||||||
|
plt.savefig(plotpath)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -67,7 +67,7 @@ class KDEBase:
|
||||||
selX = X[y==cat]
|
selX = X[y==cat]
|
||||||
if selX.size==0:
|
if selX.size==0:
|
||||||
selX = [F.uniform_prevalence(len(classes))]
|
selX = [F.uniform_prevalence(len(classes))]
|
||||||
class_cond_X.append(selX)
|
class_cond_X.append(np.asarray(selX))
|
||||||
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
|
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue