diff --git a/LeQua2024/baselines.py b/LeQua2024/baselines.py index 2a12fdb..2e45cf1 100644 --- a/LeQua2024/baselines.py +++ b/LeQua2024/baselines.py @@ -8,6 +8,7 @@ import numpy as np from sklearn.linear_model import LogisticRegression as LR from scripts.constants import SAMPLE_SIZE +from scripts.evaluate import normalized_match_distance from LeQua2024._lequa2024 import LEQUA2024_TASKS, fetch_lequa2024, LEQUA2024_ZENODO from quapy.method.aggregative import * from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE @@ -45,10 +46,10 @@ def baselines(): yield PCC(new_cls()), "PCC", q_params yield PACC(new_cls()), "PACC", q_params yield SLD(new_cls()), "SLD", q_params - yield KDEyML(new_cls()), "KDEy-ML", kde_params - yield KDEyHD(new_cls()), "KDEy-HD", kde_params + #yield KDEyML(new_cls()), "KDEy-ML", kde_params + #yield KDEyHD(new_cls()), "KDEy-HD", kde_params # yield KDEyCS(new_cls()), "KDEy-CS", kde_params - yield DMy(new_cls()), "DMy", dm_params + #yield DMy(new_cls()), "DMy", dm_params def main(args): @@ -86,7 +87,7 @@ def main(args): quantifier, param_grid, protocol=gen_val, - error=qp.error.mrae, + error=normalized_match_distance if args.task=='T3' else qp.error.mrae, refit=False, verbose=True, n_jobs=-1 diff --git a/LeQua2024/run_baselines.sh b/LeQua2024/run_baselines.sh index 445870b..339c578 100755 --- a/LeQua2024/run_baselines.sh +++ b/LeQua2024/run_baselines.sh @@ -23,7 +23,7 @@ else fi -for task in T1 T2 T3 T4 ; do +for task in T1 T2 T3 T4 ; do PYTHONPATH=.:scripts/:.. python3 baselines.py $task data/ diff --git a/LeQua2024/scripts/__init__.py b/LeQua2024/scripts/__init__.py new file mode 100644 index 0000000..e69de29