vcglib/vcg/complex/tetrahedron/base.h

1063 lines
43 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TETRA_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_TETRA_COMPLEX_BASE
#define __VCG_TETRA_COMPLEX_BASE
namespace vcg
{
class PointerToAttribute
{
public:
SimpleTempDataBase *_handle; // pointer to the SimpleTempData that stores the attribute
std::string _name; // name of the attribute
int _sizeof; // size of the attribute type (used only with VMI loading)
int _padding; // padding (used only with VMI loading)
int n_attr; // unique ID of the attribute
std::type_index _type;
void Resize(size_t sz) { ((SimpleTempDataBase *)_handle)->Resize(sz); }
void Reorder(std::vector<size_t> &newVertIndex) { ((SimpleTempDataBase *)_handle)->Reorder(newVertIndex); }
bool operator<(const PointerToAttribute b) const { return (_name.empty() && b._name.empty()) ? (_handle < b._handle) : (_name < b._name); }
PointerToAttribute() : _type(typeid(void)){};
};
namespace tetra
{
/** \addtogroup TetraMesh */
/*@{*/
/* MeshTypeHolder is a class which is used to define the types in the mesh
*/
template <class TYPESPOOL>
struct BaseMeshTypeHolder
{
typedef bool ScalarType;
typedef std::vector<typename TYPESPOOL::VertexType> CONTV;
typedef std::vector<typename TYPESPOOL::EdgeType> CONTE;
typedef std::vector<typename TYPESPOOL::FaceType> CONTF;
typedef std::vector<typename TYPESPOOL::TetraType> CONTT;
typedef CONTV VertContainer;
typedef _Vertex VertexType;
typedef typename TYPESPOOL::VertexPointer VertexPointer;
typedef const typename TYPESPOOL::VertexPointer ConstVertexPointer;
typedef bool CoordType;
typedef typename CONTV::iterator VertexIterator;
typedef typename CONTV::const_iterator ConstVertexIterator;
typedef CONTE EdgeContainer;
typedef typename CONTE::value_type EdgeType;
typedef typename TYPESPOOL::EdgePointer EdgePointer;
typedef typename CONTE::iterator EdgeIterator;
typedef typename CONTE::const_iterator ConstEdgeIterator;
typedef CONTF FaceContainer;
typedef typename CONTF::value_type FaceType;
typedef typename CONTF::const_iterator ConstFaceIterator;
typedef typename CONTF::iterator FaceIterator;
typedef typename TYPESPOOL::FacePointer FacePointer;
typedef const typename TYPESPOOL::FacePointer ConstFacePointer;
typedef CONTT TetraContainer;
typedef typename CONTT::value_type TetraType;
typedef typename TYPESPOOL::TetraPointer TetraPointer;
typedef const typename TYPESPOOL::TetraPointer ConstTetraPointer;
typedef typename CONTT::iterator TetraIterator;
typedef typename CONTT::const_iterator ConstTetraIterator;
};
template <class T, typename CONT, class TRAIT>
struct MeshTypeHolder : public T
{
};
template <class T, typename CONT>
struct MeshTypeHolder<T, CONT, AllTypes::AVertexType> : public T
{
typedef CONT VertContainer;
typedef typename VertContainer::value_type VertexType;
typedef VertexType *VertexPointer;
typedef const VertexType *ConstVertexPointer;
typedef typename VertexType::ScalarType ScalarType;
typedef typename VertexType::CoordType CoordType;
typedef typename VertContainer::iterator VertexIterator;
typedef typename VertContainer::const_iterator ConstVertexIterator;
};
template <typename T, class CONT>
struct MeshTypeHolder<T, CONT, AllTypes::AEdgeType> : public T
{
typedef CONT EdgeContainer;
typedef typename EdgeContainer::value_type EdgeType;
typedef typename EdgeContainer::value_type *EdgePointer;
typedef typename EdgeContainer::iterator EdgeIterator;
typedef typename EdgeContainer::const_iterator ConstEdgeIterator;
};
template <typename T, class CONT>
struct MeshTypeHolder<T, CONT, AllTypes::AFaceType> : public T
{
typedef CONT FaceContainer;
typedef typename FaceContainer::value_type FaceType;
typedef typename FaceContainer::const_iterator ConstFaceIterator;
typedef typename FaceContainer::iterator FaceIterator;
typedef FaceType *FacePointer;
typedef const FaceType *ConstFacePointer;
};
template <typename T, class CONT>
struct MeshTypeHolder<T, CONT, AllTypes::ATetraType> : public T
{
typedef CONT TetraContainer;
typedef typename TetraContainer::value_type TetraType;
typedef TetraType *TetraPointer;
typedef const TetraType *ConstTetraPointer;
typedef typename TetraContainer::iterator TetraIterator;
typedef typename TetraContainer::const_iterator ConstTetraIterator;
};
template <typename T, typename CONT>
struct Der : public MeshTypeHolder<T, CONT, typename CONT::value_type::IAm>
{
};
struct DummyContainer
{
struct value_type
{
typedef int IAm;
};
};
/** \brief The official \b mesh class
As explained in \ref basic_concepts, this class is templated over a list of container of simplexes (like vertex, face, edges)
*/
template <class Container0 = DummyContainer, class Container1 = DummyContainer, class Container2 = DummyContainer, class Container3 = DummyContainer>
class TetraMesh
: public MArity4<BaseMeshTypeHolder<typename Container0::value_type::TypesPool>, Container0, Der, Container1, Der, Container2, Der, Container3, Der>
{
public:
typedef typename TetraMesh::ScalarType ScalarType;
typedef typename TetraMesh::VertContainer VertContainer;
typedef typename TetraMesh::EdgeContainer EdgeContainer;
typedef typename TetraMesh::FaceContainer FaceContainer;
typedef typename TetraMesh::TetraContainer TetraContainer;
// types for vertex
typedef typename TetraMesh::VertexType VertexType;
typedef typename TetraMesh::VertexPointer VertexPointer;
typedef typename TetraMesh::ConstVertexPointer ConstVertexPointer;
typedef typename TetraMesh::CoordType CoordType;
typedef typename TetraMesh::VertexIterator VertexIterator;
typedef typename TetraMesh::ConstVertexIterator ConstVertexIterator;
// types for edge
typedef typename TetraMesh::EdgeType EdgeType;
typedef typename TetraMesh::EdgePointer EdgePointer;
typedef typename TetraMesh::EdgeIterator EdgeIterator;
typedef typename TetraMesh::ConstEdgeIterator ConstEdgeIterator;
//types for face
typedef typename TetraMesh::FaceType FaceType;
typedef typename TetraMesh::ConstFaceIterator ConstFaceIterator;
typedef typename TetraMesh::FaceIterator FaceIterator;
typedef typename TetraMesh::FacePointer FacePointer;
typedef typename TetraMesh::ConstFacePointer ConstFacePointer;
// types for hedge
typedef typename TetraMesh::TetraType TetraType;
typedef typename TetraMesh::TetraPointer TetraPointer;
typedef typename TetraMesh::ConstTetraPointer ConstTetraPointer;
typedef typename TetraMesh::TetraIterator TetraIterator
typedef typename TetraMesh::ConstTetraIterator ConstTetraIterator;
typedef vcg::PointerToAttribute PointerToAttribute;
typedef TetraMesh<Container0, Container1, Container2, Container3> MeshType;
typedef Box3<ScalarType> BoxType;
/// Container of vertices, usually a vector.
VertContainer vert;
/// Current number of vertices; this member is for internal use only. You should always use the VN() member
int vn;
/// Current number of vertices
inline int VN() const { return vn; }
/// Container of edges, usually a vector.
EdgeContainer edge;
/// Current number of edges; this member is for internal use only. You should always use the EN() member
int en;
/// Current number of edges
inline int EN() const { return en; }
/// Container of faces, usually a vector.
FaceContainer face;
/// Current number of faces; this member is for internal use only. You should always use the FN() member
int fn;
/// Current number of faces
inline int FN() const { return fn; }
/// Container of tetras, usually a vector.
TetraContainer tetra;
/// Current number of tetras; this member is for internal use only. You should always use the TN() member
int tn;
/// Current number of tetras;
inline int TN() const { return tn; }
/// Bounding box of the mesh
Box3<typename TetraMesh::VertexType::CoordType::ScalarType> bbox;
/// Nomi di textures
//
std::vector<std::string> textures;
//
std::vector<std::string> normalmaps;
int attrn; // total numer of attribute created
std::set<PointerToAttribute> vert_attr;
std::set<PointerToAttribute> edge_attr;
std::set<PointerToAttribute> face_attr;
std::set<PointerToAttribute> tetra_attr;
std::set<PointerToAttribute> mesh_attr;
template <class ATTR_TYPE, class CONT>
class AttributeHandle
{
public:
AttributeHandle() { _handle = (SimpleTempData<CONT, ATTR_TYPE> *)NULL; }
AttributeHandle(void *ah, const int &n) : _handle((SimpleTempData<CONT, ATTR_TYPE> *)ah), n_attr(n) {}
AttributeHandle operator=(const PointerToAttribute &pva)
{
_handle = (SimpleTempData<CONT, ATTR_TYPE> *)pva._handle;
n_attr = pva.n_attr;
return (*this);
}
//pointer to the SimpleTempData that stores the attribute
SimpleTempData<CONT, ATTR_TYPE> *_handle;
// its attribute number
int n_attr;
// access function
template <class RefType>
ATTR_TYPE &operator[](const RefType &i) { return (*_handle)[i]; }
void resize(size_t /*size*/){};
};
template <class ATTR_TYPE>
class PerVertexAttributeHandle : public AttributeHandle<ATTR_TYPE, VertContainer>
{
public:
PerVertexAttributeHandle() : AttributeHandle<ATTR_TYPE, VertContainer>() {}
PerVertexAttributeHandle(void *ah, const int &n) : AttributeHandle<ATTR_TYPE, VertContainer>(ah, n) {}
};
template <class ATTR_TYPE>
class PerFaceAttributeHandle : public AttributeHandle<ATTR_TYPE, FaceContainer>
{
public:
PerFaceAttributeHandle() : AttributeHandle<ATTR_TYPE, FaceContainer>() {}
PerFaceAttributeHandle(void *ah, const int &n) : AttributeHandle<ATTR_TYPE, FaceContainer>(ah, n) {}
};
template <class ATTR_TYPE>
class PerEdgeAttributeHandle : public AttributeHandle<ATTR_TYPE, EdgeContainer>
{
public:
PerEdgeAttributeHandle() : AttributeHandle<ATTR_TYPE, EdgeContainer>() {}
PerEdgeAttributeHandle(void *ah, const int &n) : AttributeHandle<ATTR_TYPE, EdgeContainer>(ah, n) {}
};
template <class ATTR_TYPE>
class PerTetraAttributeHandle : public AttributeHandle<ATTR_TYPE, TetraContainer>
{
public:
PerTetraAttributeHandle() : AttributeHandle<ATTR_TYPE, TetraContainer>() {}
PerTetraAttributeHandle(void *ah, const int &n) : AttributeHandle<ATTR_TYPE, TetraContainer>(ah, n) {}
};
template <class ATTR_TYPE>
class PerMeshAttributeHandle
{
public:
PerMeshAttributeHandle() { _handle = NULL; }
PerMeshAttributeHandle(void *ah, const int &n) : _handle((Attribute<ATTR_TYPE> *)ah), n_attr(n) {}
PerMeshAttributeHandle operator=(const PerMeshAttributeHandle &pva)
{
_handle = (Attribute<ATTR_TYPE> *)pva._handle;
n_attr = pva.n_attr;
return (*this);
}
Attribute<ATTR_TYPE> *_handle;
int n_attr;
ATTR_TYPE &operator()() { return *((Attribute<ATTR_TYPE> *)_handle)->attribute; }
};
// Some common Handle typedefs to simplify use
typedef typename MeshType::template PerVertexAttributeHandle<ScalarType> PerVertexScalarHandle;
typedef typename MeshType::template PerVertexAttributeHandle<int> PerVertexIntHandle;
typedef typename MeshType::template PerVertexAttributeHandle<bool> PerVertexBoolHandle;
typedef typename MeshType::template PerVertexAttributeHandle<CoordType> PerVertexCoordHandle;
typedef typename MeshType::template PerFaceAttributeHandle<ScalarType> PerFaceScalarHandle;
typedef typename MeshType::template PerFaceAttributeHandle<int> PerFaceIntHandle;
typedef typename MeshType::template PerFaceAttributeHandle<bool> PerFaceBoolHandle;
typedef typename MeshType::template PerFaceAttributeHandle<CoordType> PerFaceCoordHandle;
typedef typename MeshType::template PerTetraAttributeHandle<ScalarType> PerTetraScalarHandle;
typedef typename MeshType::template PerTetraAttributeHandle<int> PerTetraIntHandle;
typedef typename MeshType::template PerTetraAttributeHandle<bool> PerTetraBoolHandle;
typedef typename MeshType::template PerTetraAttributeHandle<CoordType> PerTetraCoordHandle;
// the camera member (that should keep the intrinsics) is no more needed since 2006, when intrisncs moved into the Shot structure
//Camera<ScalarType> camera; // intrinsic
Shot<ScalarType> shot; // intrinsic && extrinsic
private:
/// The per-mesh color. Not very useful and meaningful...
Color4b c;
public:
inline const Color4b &C() const { return c; }
inline Color4b &C() { return c; }
inline Color4b cC() const { return c; }
/// Default constructor
TetraMesh()
{
Clear();
}
/// destructor
~TetraMesh()
{
Clear();
}
int Mem(const int &nv, const int &nf, const int &nt) const
{
typename std::set<PointerToAttribute>::const_iterator i;
int size = 0;
size += sizeof(TetraMesh) + sizeof(VertexType) * nv + sizeof(FaceType) * nf + sizeof(TetraType) * nt;
for (i = vert_attr.begin(); i != vert_attr.end(); ++i)
size += ((SimpleTempDataBase *)(*i)._handle)->SizeOf() * nv;
for (i = edge_attr.begin(); i != edge_attr.end(); ++i)
size += ((SimpleTempDataBase *)(*i)._handle)->SizeOf() * en;
for (i = face_attr.begin(); i != face_attr.end(); ++i)
size += ((SimpleTempDataBase *)(*i)._handle)->SizeOf() * nf;
for (i = tetra_attr.begin(); i != tetra_attr.end(); ++i)
size += ((SimpleTempDataBase *)(*i)._handle)->SizeOf() * nt;
for (i = mesh_attr.begin(); i != mesh_attr.end(); ++i)
size += ((SimpleTempDataBase *)(*i)._handle)->SizeOf();
return size;
}
int MemUsed() const { return Mem(vert.size(), face.size(), tetra.size()); }
inline int MemNeeded() const { return Mem(vn, fn, tn); }
/// Function to destroy the mesh
void Clear()
{
for (FaceIterator fi = face.begin(); fi != face.end(); ++fi)
(*fi).Dealloc();
vert.clear();
face.clear();
edge.clear();
tetra.clear();
// textures.clear();
// normalmaps.clear();
vn = 0;
en = 0;
fn = 0;
hn = 0;
imark = 0;
C() = Color4b::Gray;
}
void ClearAttributes()
{
// Clear attributes
typename std::set<PointerToAttribute>::iterator i;
for (i = vert_attr.begin(); i != vert_attr.end(); ++i)
delete ((SimpleTempDataBase *)(*i)._handle);
vert_attr.clear();
for (i = edge_attr.begin(); i != edge_attr.end(); ++i)
delete ((SimpleTempDataBase *)(*i)._handle);
edge_attr.clear();
for (i = face_attr.begin(); i != face_attr.end(); ++i)
delete ((SimpleTempDataBase *)(*i)._handle);
face_attr.clear();
for (i = tetra_attr.begin(); i != tetra_attr.end(); ++i)
delete ((SimpleTempDataBase *)(*i)._handle);
tetra_attr.clear();
for (i = mesh_attr.begin(); i != mesh_attr.end(); ++i)
delete ((SimpleTempDataBase *)(*i)._handle);
mesh_attr.clear();
attrn = 0;
}
bool IsEmpty() const
{
return vert.empty() && edge.empty() && face.empty() && tetra.empty();
}
int &TetraNumber() { return tn; }
int &SimplexNumber() { return fn; }
int &VertexNumber() { return vn; }
/// The incremental mark
int imark;
private:
// TetraMesh cannot be copied. Use Append (see vcg/complex/append.h)
TetraMesh operator=(const TetraMesh & /*m*/)
{
assert(0);
return TetraMesh();
}
TetraMesh(const TetraMesh &) {}
}; // end class Mesh
/// Initialize the imark-system of the faces
template <class MeshType>
inline void InitFaceIMark(MeshType &m)
{
typename MeshType::FaceIterator f;
for (f = m.face.begin(); f != m.face.end(); ++f)
if (!(*f).IsD() && (*f).IsR() && (*f).IsW())
(*f).InitIMark();
}
/// Initialize the imark-system of the vertices
template <class MeshType>
inline void InitVertexIMark(MeshType &m)
{
typename MeshType::VertexIterator vi;
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!(*vi).IsD() && (*vi).IsRW())
(*vi).InitIMark();
}
///initialize the imark-sysyem of the tetras
template <class MeshType>
inline void InitTetraIMark(MeshType &m)
{
typename MeshType::TetraIterator ti;
for (ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
if (!(*ti).IsD() && (*ti).IsRW())
(*ti).InitIMark();
}
/** \brief Access function to the incremental mark.
You should not use this member directly. In most of the case just use IsMarked() and Mark()
*/
template <class MeshType>
inline int &IMark(MeshType &m) { return m.imark; }
/** \brief Check if the vertex incremental mark matches the one of the mesh.
@param m the mesh containing the element
@param v Vertex pointer */
template <class MeshType>
inline bool IsMarked(MeshType &m, typename MeshType::ConstVertexPointer v) { return v->cIMark() == m.imark; }
/** \brief Check if the face incremental mark matches the one of the mesh.
@param m the mesh containing the element
@param f Face pointer */
template <class MeshType>
inline bool IsMarked(MeshType &m, typename MeshType::ConstFacePointer f) { return f->cIMark() == m.imark; }
/** \brief Check if the tetra incremental mark matches the one of the mesh.
@param m the mesh containing the element
@param t tetra pointer */
template <class MeshType>
inline bool IsMarked(MeshType &m, typename MeshType::ConstTetraPointer t) { return t->cIMark() == m.imark; }
/** \brief Set the vertex incremental mark of the vertex to the one of the mesh.
@param m the mesh containing the element
@param v Vertex pointer */
template <class MeshType>
inline void Mark(MeshType &m, typename MeshType::VertexPointer v) { v->IMark() = m.imark; }
/** \brief Set the face incremental mark of the vertex to the one of the mesh.
@param m the mesh containing the element
@param f Vertex pointer */
template <class MeshType>
inline void Mark(MeshType &m, typename MeshType::FacePointer f) { f->IMark() = m.imark; }
/** \brief Set the tetra incremental mark to the one of the mesh.
@param m the mesh containing the element
@param t tetra pointer */
template <class MeshType>
inline void Mark(MeshType &m, typename MeshType::TetraPointer t) { t->IMark() = m.imark; }
/** \brief Unmark, in constant time, all the elements (face and vertices) of a mesh.
@param m the mesh containing the element
In practice this function just increment the internal counter that stores the value for which an element is considered marked;
therefore all the mesh elements become immediately un-mmarked.
*/
template <class MeshType>
inline void UnMarkAll(MeshType &m)
{
++m.imark;
}
//template < class CType0, class CType1 , class CType2, class CType3>
//bool HasPerVertexVEAdjacency (const TetraMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TetraMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVEAdjacency();}
//template < class CType0, class CType1, class CType2 , class CType3>
//bool HasPerEdgeVEAdjacency (const TetraMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TetraMesh < CType0 , CType1, CType2, CType3>::EdgeContainer::value_type::HasVEAdjacency();}
//TODO: ADD FT ET ADJACENCY
template <class VertexType>
bool VertexVectorHasVFAdjacency(const std::vector<VertexType> &) { return VertexType::HasVFAdjacency(); }
template <class VertexType>
bool VertexVectorHasVEAdjacency(const std::vector<VertexType> &) { return VertexType::HasVEAdjacency(); }
template <class VertexType>
bool VertexVectorHasVTAdjacency(const std::vector<VertexType> &) { return VertexType::HasVTAdjacency(); }
template <class EdgeType>
bool EdgeVectorHasVEAdjacency(const std::vector<EdgeType> &) { return EdgeType::HasVEAdjacency(); }
template <class EdgeType>
bool EdgeVectorHasEEAdjacency(const std::vector<EdgeType> &) { return EdgeType::HasEEAdjacency(); }
template <class FaceType>
bool FaceVectorHasVFAdjacency(const std::vector<FaceType> &) { return FaceType::HasVFAdjacency(); }
template <class TetraMeshType>
bool HasPerVertexVFAdjacency(const TetraMeshType &m) { return tetra::VertexVectorHasVFAdjacency(m.vert); }
template <class TetraMeshType>
bool HasPerVertexVEAdjacency(const TetraMeshType &m) { return tetra::VertexVectorHasVEAdjacency(m.vert); }
template <class TetraMeshType>
bool HasPerVertexVTAdjacency(const TetraMeshType &m) { return tetra::VertexVectorHasVTAdjacency(m.vert); }
template <class TetraMeshType>
bool HasPerEdgeVEAdjacency(const TetraMeshType &m) { return tetra::EdgeVectorHasVEAdjacency(m.edge); }
template <class TetraMeshType>
bool HasPerFaceVFAdjacency(const TetraMeshType &m) { return tetra::FaceVectorHasVFAdjacency(m.face); }
template <class VertexType>
bool VertexVectorHasPerVertexQuality(const std::vector<VertexType> &) { return VertexType::HasQuality(); }
template <class VertexType>
bool VertexVectorHasPerVertexNormal(const std::vector<VertexType> &) { return VertexType::HasNormal(); }
template <class VertexType>
bool VertexVectorHasPerVertexColor(const std::vector<VertexType> &) { return VertexType::HasColor(); }
template <class VertexType>
bool VertexVectorHasPerVertexMark(const std::vector<VertexType> &) { return VertexType::HasMark(); }
template <class VertexType>
bool VertexVectorHasPerVertexFlags(const std::vector<VertexType> &) { return VertexType::HasFlags(); }
template <class VertexType>
bool VertexVectorHasPerVertexRadius(const std::vector<VertexType> &) { return VertexType::HasRadius(); }
template <class VertexType>
bool VertexVectorHasPerVertexCurvature(const std::vector<VertexType> &) { return VertexType::HasCurvature(); }
template <class VertexType>
bool VertexVectorHasPerVertexCurvatureDir(const std::vector<VertexType> &) { return VertexType::HasCurvatureDir(); }
template <class VertexType>
bool VertexVectorHasPerVertexTexCoord(const std::vector<VertexType> &) { return VertexType::HasTexCoord(); }
template <class TetraMeshType>
bool HasPerVertexQuality(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexQuality(m.vert); }
template <class TetraMeshType>
bool HasPerVertexNormal(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexNormal(m.vert); }
template <class TetraMeshType>
bool HasPerVertexColor(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexColor(m.vert); }
template <class TetraMeshType>
bool HasPerVertexMark(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexMark(m.vert); }
template <class TetraMeshType>
bool HasPerVertexFlags(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexFlags(m.vert); }
template <class TetraMeshType>
bool HasPerVertexRadius(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexRadius(m.vert); }
template <class TetraMeshType>
bool HasPerVertexCurvature(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexCurvature(m.vert); }
template <class TetraMeshType>
bool HasPerVertexCurvatureDir(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexCurvatureDir(m.vert); }
template <class TetraMeshType>
bool HasPerVertexTexCoord(const TetraMeshType &m) { return tetra::VertexVectorHasPerVertexTexCoord(m.vert); }
template <class EdgeType>
bool EdgeVectorHasPerEdgeQuality(const std::vector<EdgeType> &) { return EdgeType::HasQuality(); }
template <class EdgeType>
bool EdgeVectorHasPerEdgeNormal(const std::vector<EdgeType> &) { return EdgeType::HasNormal(); }
template <class EdgeType>
bool EdgeVectorHasPerEdgeColor(const std::vector<EdgeType> &) { return EdgeType::HasColor(); }
template <class EdgeType>
bool EdgeVectorHasPerEdgeMark(const std::vector<EdgeType> &) { return EdgeType::HasMark(); }
template <class EdgeType>
bool EdgeVectorHasPerEdgeFlags(const std::vector<EdgeType> &) { return EdgeType::HasFlags(); }
template <class TetraMeshType>
bool HasPerEdgeQuality(const TetraMeshType &m) { return tetra::EdgeVectorHasPerEdgeQuality(m.edge); }
template <class TetraMeshType>
bool HasPerEdgeNormal(const TetraMeshType &m) { return tetra::EdgeVectorHasPerEdgeNormal(m.edge); }
template <class TetraMeshType>
bool HasPerEdgeColor(const TetraMeshType &m) { return tetra::EdgeVectorHasPerEdgeColor(m.edge); }
template <class TetraMeshType>
bool HasPerEdgeMark(const TetraMeshType &m) { return tetra::EdgeVectorHasPerEdgeMark(m.edge); }
template <class TetraMeshType>
bool HasPerEdgeFlags(const TetraMeshType &m) { return tetra::EdgeVectorHasPerEdgeFlags(m.edge); }
template <class FaceType>
bool FaceVectorHasPerWedgeColor(const std::vector<FaceType> &) { return FaceType::HasWedgeColor(); }
template <class FaceType>
bool FaceVectorHasPerWedgeNormal(const std::vector<FaceType> &) { return FaceType::HasWedgeNormal(); }
template <class FaceType>
bool FaceVectorHasPerWedgeTexCoord(const std::vector<FaceType> &) { return FaceType::HasWedgeTexCoord(); }
template <class TetraMeshType>
bool HasPerWedgeColor(const TetraMeshType &m) { return tetra::FaceVectorHasPerWedgeColor(m.face); }
template <class TetraMeshType>
bool HasPerWedgeNormal(const TetraMeshType &m) { return tetra::FaceVectorHasPerWedgeNormal(m.face); }
template <class TetraMeshType>
bool HasPerWedgeTexCoord(const TetraMeshType &m) { return tetra::FaceVectorHasPerWedgeTexCoord(m.face); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasPolyInfo(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::FaceContainer::value_type::HasPolyInfo(); }
template <class FaceType>
bool FaceVectorHasPerFaceFlags(const std::vector<FaceType> &) { return FaceType::HasFlags(); }
template <class FaceType>
bool FaceVectorHasPerFaceNormal(const std::vector<FaceType> &) { return FaceType::HasNormal(); }
template <class FaceType>
bool FaceVectorHasPerFaceColor(const std::vector<FaceType> &) { return FaceType::HasColor(); }
template <class FaceType>
bool FaceVectorHasPerFaceMark(const std::vector<FaceType> &) { return FaceType::HasMark(); }
template <class FaceType>
bool FaceVectorHasPerFaceQuality(const std::vector<FaceType> &) { return FaceType::HasQuality(); }
template <class FaceType>
bool FaceVectorHasFFAdjacency(const std::vector<FaceType> &) { return FaceType::HasFFAdjacency(); }
template <class FaceType>
bool FaceVectorHasFEAdjacency(const std::vector<FaceType> &) { return FaceType::HasFEAdjacency(); }
template <class FaceType>
bool FaceVectorHasFVAdjacency(const std::vector<FaceType> &) { return FaceType::HasFVAdjacency(); }
template <class FaceType>
bool FaceVectorHasPerFaceCurvatureDir(const std::vector<FaceType> &) { return FaceType::HasCurvatureDir(); }
template <class TetraMeshType>
bool HasPerFaceFlags(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceFlags(m.face); }
template <class TetraMeshType>
bool HasPerFaceNormal(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceNormal(m.face); }
template <class TetraMeshType>
bool HasPerFaceColor(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceColor(m.face); }
template <class TetraMeshType>
bool HasPerFaceMark(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceMark(m.face); }
template <class TetraMeshType>
bool HasPerFaceQuality(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceQuality(m.face); }
template <class TetraMeshType>
bool HasPerFaceCurvatureDir(const TetraMeshType &m) { return tetra::FaceVectorHasPerFaceCurvatureDir(m.face); }
template <class TetraMeshType>
bool HasFFAdjacency(const TetraMeshType &m) { return tetra::FaceVectorHasFFAdjacency(m.face); }
template <class TetraMeshType>
bool HasEEAdjacency(const TetraMeshType &m) { return tetra::EdgeVectorHasEEAdjacency(m.edge); }
template <class TetraMeshType>
bool HasFEAdjacency(const TetraMeshType &m) { return tetra::FaceVectorHasFEAdjacency(m.face); }
template <class TetraMeshType>
bool HasFVAdjacency(const TetraMeshType &m) { return tetra::FaceVectorHasFVAdjacency(m.face); }
//:::::::::::TETRA::::::::::::::::
template <class TetraType>
bool TetraVectorHasVTAdjacency(const std::vector<TetraType> &) { return TetraType::HasVTAdjacency(); }
template <class TetraMeshType>
bool HasTVAdjacency(const TetraMeshType &m) { return tetra::TetraVectorHasVTAdjacency(m.tetra); }
template <class TetraMeshType>
bool HasVFAdjacency(const TetraMeshType &m) { return tetra::FaceVectorHasVFAdjacency(m.face) && tetra::VertexVectorHasVFAdjacency(m.vert); }
template <class TetraMeshType>
bool HasVEAdjacency(const TetraMeshType &m) { return tetra::EdgeVectorHasVEAdjacency(m.edge) && tetra::VertexVectorHasVEAdjacency(m.vert); }
template <class TetraMeshType>
bool HasVTAdjacency(const TetraMeshType &m) { return tetra::VertexVectorHasVTAdjacency(m.vert) && tetra::TetraVectorHasVTAdjacency(m.tetra); }
//template < class CType0, class CType1, class CType2 , class CType3>
//bool HasVEAdjacency (const TetraMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TetraMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVEAdjacency();}
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasVHAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::VertContainer::value_type::HasVHAdjacency(); }
template <class CType0, class CType1, class CType2, class CType3>
bool HasEVAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::EdgeType::HasEVAdjacency(); }
//template < class CType0, class CType1, class CType2 , class CType3>
//bool HasEEAdjacency (const TetraMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TetraMesh < CType0 , CType1, CType2, CType3>::EdgeType::HasEEAdjacency();}
template <class CType0, class CType1, class CType2, class CType3>
bool HasEFAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::EdgeType::HasEFAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasEHAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::EdgeType::HasEHAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasFHAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::FaceType::HasFHAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHVAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHVAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHEAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHEAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHFAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHFAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHNextAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHNextAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHPrevAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHPrevAdjacency(); }
// template <class CType0, class CType1, class CType2, class CType3>
// bool HasHOppAdjacency(const TetraMesh<CType0, CType1, CType2, CType3> & /*m*/) { return TetraMesh<CType0, CType1, CType2, CType3>::HEdgeType::HasHOppAdjacency(); }
// //template < class CType0, class CType1 , class CType2, class CType3>
//bool HasVFAdjacency (const TetraMesh < CType0 , CType1, CType2, CType3> & m ) {
// // gcc 4.4: if the expressions assigned to a1 and a2 are replaced in the assert we get a compilation error
// // for the macro assert
// bool a1 = TetraMesh < CType0 , CType1, CType2, CType3>::FaceContainer::value_type::HasVFAdjacency();
// bool a2 = TetraMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVFAdjacency();
// // a1 and a2 are still evaluated but not referenced, this causes a warning
// (void)a1;
// (void)a2;
// assert(a1==a2);
//
// return vcg::tetra::HasPerVertexVFAdjacency< CType0, CType1 , CType2, CType3>(m) &&
// vcg::tetra::HasPerFaceVFAdjacency< CType0, CType1 , CType2, CType3>(m) ;
//}
template <class MeshType>
bool HasPerVertexAttribute(const MeshType &m, std::string name)
{
typename std::set<typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.vert_attr.find(h);
return (ai != m.vert_attr.end());
}
template <class MeshType>
bool HasPerFaceAttribute(const MeshType &m, std::string name)
{
typename std::set<typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.face_attr.find(h);
return (ai != m.face_attr.end());
}
template <class MeshType>
bool HasPerTetraAttribute(const MeshType &m, std::string name)
{
typename std::set<typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.tetra_attr.find(h);
return (ai != m.tetra_attr.end());
}
template <class MeshType>
bool HasPerMeshAttribute(const MeshType &m, std::string name)
{
typename std::set<typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.mesh_attr.find(h);
return (ai != m.mesh_attr.end());
}
template <class MeshType>
void RequireVertexCompactness(MeshType &m)
{
if (m.vert.size() != size_t(m.vn))
throw vcg::MissingCompactnessException("Vertex Vector Contains deleted elements");
}
template <class MeshType>
void RequireFaceCompactness(MeshType &m)
{
if (m.face.size() != size_t(m.fn))
throw vcg::MissingCompactnessException("Face Vector Contains deleted elements");
}
template <class MeshType>
void RequireEdgeCompactness(MeshType &m)
{
if (m.edge.size() != size_t(m.en))
throw vcg::MissingCompactnessException("Edge Vector Contains deleted elements");
}
template <class MeshType>
void RequireTetraCompactness(MeshType &m)
{
if (m.tetra.size() != size_t(m.tn))
throw vcg::MissingCompactnessException("Tetra Vector Contains deleted elements");
}
template <class MeshType>
void RequireCompactness(MeshType &m)
{
RequireVertexCompactness<MeshType>(m);
RequireFaceCompactness<MeshType>(m);
RequireEdgeCompactness<MeshType>(m);
RequireTetraCompactness<MeshType>(m);
}
template <class MeshType>
void RequireTriangularMesh(MeshType &m)
{
// if (tetra::HasPolyInfo(m))
throw vcg::MissingTriangularRequirementException("");
}
template <class MeshType>
void RequirePolygonalMesh(MeshType &m)
{
// if (!tetra::HasPolyInfo(m))
throw vcg::MissingPolygonalRequirementException("");
}
template <class MeshType>
void RequireVFAdjacency(MeshType &m)
{
if (!tetra::HasVFAdjacency(m))
throw vcg::MissingComponentException("VFAdjacency");
}
template <class MeshType>
void RequireVEAdjacency(MeshType &m)
{
if (!tetra::HasVEAdjacency(m))
throw vcg::MissingComponentException("VEAdjacency");
}
template <class MeshType>
void RequireFFAdjacency(MeshType &m)
{
if (!tetra::HasFFAdjacency(m))
throw vcg::MissingComponentException("FFAdjacency");
}
template <class MeshType>
void RequireEEAdjacency(MeshType &m)
{
if (!tetra::HasEEAdjacency(m))
throw vcg::MissingComponentException("EEAdjacency");
}
template <class MeshType>
void RequireFEAdjacency(MeshType &m)
{
if (!tetra::HasFEAdjacency(m))
throw vcg::MissingComponentException("FEAdjacency");
}
template <class MeshType>
void RequireVTAdjacency(MeshType &m)
{
if (!tetra::HasVTAdjacency(m))
throw vcg::MissingComponentException("VTAdjacency");
}
// template <class MeshType>
// void RequireFHAdjacency(MeshType &m)
// {
// if (!tetra::HasFHAdjacency(m))
// throw vcg::MissingComponentException("FHAdjacency");
// }
template <class MeshType>
void RequirePerVertexQuality(MeshType &m)
{
if (!tetra::HasPerVertexQuality(m))
throw vcg::MissingComponentException("PerVertexQuality ");
}
template <class MeshType>
void RequirePerVertexNormal(MeshType &m)
{
if (!tetra::HasPerVertexNormal(m))
throw vcg::MissingComponentException("PerVertexNormal ");
}
template <class MeshType>
void RequirePerVertexColor(MeshType &m)
{
if (!tetra::HasPerVertexColor(m))
throw vcg::MissingComponentException("PerVertexColor ");
}
template <class MeshType>
void RequirePerVertexMark(MeshType &m)
{
if (!tetra::HasPerVertexMark(m))
throw vcg::MissingComponentException("PerVertexMark ");
}
template <class MeshType>
void RequirePerVertexFlags(MeshType &m)
{
if (!tetra::HasPerVertexFlags(m))
throw vcg::MissingComponentException("PerVertexFlags ");
}
template <class MeshType>
void RequirePerVertexRadius(MeshType &m)
{
if (!tetra::HasPerVertexRadius(m))
throw vcg::MissingComponentException("PerVertexRadius ");
}
template <class MeshType>
void RequirePerVertexCurvature(MeshType &m)
{
if (!tetra::HasPerVertexCurvature(m))
throw vcg::MissingComponentException("PerVertexCurvature ");
}
template <class MeshType>
void RequirePerVertexCurvatureDir(MeshType &m)
{
if (!tetra::HasPerVertexCurvatureDir(m))
throw vcg::MissingComponentException("PerVertexCurvatureDir");
}
template <class MeshType>
void RequirePerVertexTexCoord(MeshType &m)
{
if (!tetra::HasPerVertexTexCoord(m))
throw vcg::MissingComponentException("PerVertexTexCoord ");
}
template <class MeshType>
void RequirePerEdgeQuality(MeshType &m)
{
if (!tetra::HasPerEdgeQuality(m))
throw vcg::MissingComponentException("PerEdgeQuality ");
}
template <class MeshType>
void RequirePerEdgeNormal(MeshType &m)
{
if (!tetra::HasPerEdgeNormal(m))
throw vcg::MissingComponentException("PerEdgeNormal ");
}
template <class MeshType>
void RequirePerEdgeColor(MeshType &m)
{
if (!tetra::HasPerEdgeColor(m))
throw vcg::MissingComponentException("PerEdgeColor ");
}
template <class MeshType>
void RequirePerEdgeMark(MeshType &m)
{
if (!tetra::HasPerEdgeMark(m))
throw vcg::MissingComponentException("PerEdgeMark ");
}
template <class MeshType>
void RequirePerEdgeFlags(MeshType &m)
{
if (!tetra::HasPerEdgeFlags(m))
throw vcg::MissingComponentException("PerEdgeFlags ");
}
template <class MeshType>
void RequirePerFaceFlags(MeshType &m)
{
if (!tetra::HasPerFaceFlags(m))
throw vcg::MissingComponentException("PerFaceFlags ");
}
template <class MeshType>
void RequirePerFaceNormal(MeshType &m)
{
if (!tetra::HasPerFaceNormal(m))
throw vcg::MissingComponentException("PerFaceNormal ");
}
template <class MeshType>
void RequirePerFaceColor(MeshType &m)
{
if (!tetra::HasPerFaceColor(m))
throw vcg::MissingComponentException("PerFaceColor ");
}
template <class MeshType>
void RequirePerFaceMark(MeshType &m)
{
if (!tetra::HasPerFaceMark(m))
throw vcg::MissingComponentException("PerFaceMark ");
}
template <class MeshType>
void RequirePerFaceQuality(MeshType &m)
{
if (!tetra::HasPerFaceQuality(m))
throw vcg::MissingComponentException("PerFaceQuality ");
}
template <class MeshType>
void RequirePerFaceCurvatureDir(MeshType &m)
{
if (!tetra::HasPerFaceCurvatureDir(m))
throw vcg::MissingComponentException("PerFaceCurvatureDir");
}
template <class MeshType>
void RequirePerFaceWedgeColor(MeshType &m)
{
if (!tetra::HasPerWedgeColor(m))
throw vcg::MissingComponentException("PerFaceWedgeColor ");
}
template <class MeshType>
void RequirePerFaceWedgeNormal(MeshType &m)
{
if (!tetra::HasPerWedgeNormal(m))
throw vcg::MissingComponentException("PerFaceWedgeNormal ");
}
template <class MeshType>
void RequirePerFaceWedgeTexCoord(MeshType &m)
{
if (!tetra::HasPerWedgeTexCoord(m))
throw vcg::MissingComponentException("PerFaceWedgeTexCoord");
}
template <class MeshType>
void RequirePerVertexAttribute(MeshType &m, const char *name)
{
if (!HasPerVertexAttribute(m, name))
throw vcg::MissingComponentException("PerVertex attribute");
}
template <class MeshType>
void RequirePerEdgeAttribute(MeshType &m, const char *name)
{
if (!HasPerEdgeAttribute(m, name))
throw vcg::MissingComponentException("PerEdge attribute");
}
template <class MeshType>
void RequirePerFaceAttribute(MeshType &m, const char *name)
{
if (!HasPerFaceAttribute(m, name))
throw vcg::MissingComponentException("PerFace attribute");
}
template <class MeshType>
void RequirePerMeshAttribute(MeshType &m, const char *name)
{
if (!HasPerMeshAttribute(m, name))
throw vcg::MissingComponentException("PerMesh attribute");
}
/*@}*/
/*@}*/
} // end namespace
} // end namespace
#endif // BASE_H