From e768943f3e031e5440eb41523fc7c7367600dade Mon Sep 17 00:00:00 2001 From: cignoni Date: Wed, 18 Jun 2014 17:29:34 +0000 Subject: [PATCH] Small changes in the long long way to making meshlab and the vcglib really float/double independent --- vcg/math/quadric5.h | 977 ++++++++++++++++++++++---------------------- 1 file changed, 489 insertions(+), 488 deletions(-) diff --git a/vcg/math/quadric5.h b/vcg/math/quadric5.h index b808f7c9..22418d94 100644 --- a/vcg/math/quadric5.h +++ b/vcg/math/quadric5.h @@ -8,7 +8,7 @@ * \ * * All rights reserved. * * * -* This program is free software; you can redistribute it and/or modify * +* This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * @@ -165,598 +165,599 @@ class Quadric5 public: typedef Scalar ScalarType; // typedef CMeshO::VertexType::FaceType FaceType; - - // the real quadric - ScalarType a[15]; - ScalarType b[5]; - ScalarType c; - - inline Quadric5() { c = -1;} - // Necessari se si utilizza stl microsoft - // inline bool operator < ( const Quadric & q ) const { return false; } - // inline bool operator == ( const Quadric & q ) const { return true; } + // the real quadric + ScalarType a[15]; + ScalarType b[5]; + ScalarType c; - bool IsValid() const { return (c>=0); } - void SetInvalid() { c = -1.0; } + inline Quadric5() { c = -1;} - void Zero() // Azzera le quadriche - { - a[0] = 0; - a[1] = 0; - a[2] = 0; - a[3] = 0; - a[4] = 0; - a[5] = 0; - a[6] = 0; - a[7] = 0; - a[8] = 0; - a[9] = 0; - a[10] = 0; - a[11] = 0; - a[12] = 0; - a[13] = 0; - a[14] = 0; + // Necessari se si utilizza stl microsoft + // inline bool operator < ( const Quadric & q ) const { return false; } + // inline bool operator == ( const Quadric & q ) const { return true; } - b[0] = 0; - b[1] = 0; - b[2] = 0; - b[3] = 0; - b[4] = 0; + bool IsValid() const { return (c>=0); } + void SetInvalid() { c = -1.0; } - c = 0; - } + void Zero() // Azzera le quadriche + { + a[0] = 0; + a[1] = 0; + a[2] = 0; + a[3] = 0; + a[4] = 0; + a[5] = 0; + a[6] = 0; + a[7] = 0; + a[8] = 0; + a[9] = 0; + a[10] = 0; + a[11] = 0; + a[12] = 0; + a[13] = 0; + a[14] = 0; - void swapv(ScalarType *vv, ScalarType *ww) - { - ScalarType tmp; - for(int i = 0; i < 5; i++) - { - tmp = vv[i]; - vv[i] = ww[i]; - ww[i] = tmp; - } - } - - // Add the right subset of the current 5D quadric to a given 3D quadric. + b[0] = 0; + b[1] = 0; + b[2] = 0; + b[3] = 0; + b[4] = 0; + + c = 0; + } + + void swapv(ScalarType *vv, ScalarType *ww) + { + ScalarType tmp; + for(int i = 0; i < 5; i++) + { + tmp = vv[i]; + vv[i] = ww[i]; + ww[i] = tmp; + } + } + + // Add the right subset of the current 5D quadric to a given 3D quadric. void AddtoQ3(math::Quadric &q3) const - { - q3.a[0] += a[0]; - q3.a[1] += a[1]; - q3.a[2] += a[2]; - q3.a[3] += a[5]; - q3.a[4] += a[6]; + { + q3.a[0] += a[0]; + q3.a[1] += a[1]; + q3.a[2] += a[2]; + q3.a[3] += a[5]; + q3.a[4] += a[6]; - q3.a[5] += a[9]; + q3.a[5] += a[9]; - q3.b[0] += b[0]; - q3.b[1] += b[1]; - q3.b[2] += b[2]; + q3.b[0] += b[0]; + q3.b[1] += b[1]; + q3.b[2] += b[2]; - q3.c += c; - - assert(q3.IsValid()); - } - - - // computes the real quadric and the geometric quadric using the face - // The geometric quadric is added to the parameter qgeo + q3.c += c; + + assert(q3.IsValid()); + } + + + // computes the real quadric and the geometric quadric using the face + // The geometric quadric is added to the parameter qgeo template void byFace(FaceType &f, math::Quadric &q1, math::Quadric &q2, math::Quadric &q3, bool QualityQuadric, ScalarType BorderWeight) - { - double q = QualityFace(f); - - // if quality==0 then the geometrical quadric has just zeroes - if(q) - { - byFace(f,true); // computes the geometrical quadric - AddtoQ3(q1); - AddtoQ3(q2); - AddtoQ3(q3); - byFace(f,false); // computes the real quadric - for(int j=0;j<3;++j) - { - if( f.IsB(j) || QualityQuadric ) - { - Quadric5 temp; - TexCoord2f newtex; - Point3f newpoint = (f.P0(j)+f.P1(j))/2.0 + (f.N()/f.N().Norm())*Distance(f.P0(j),f.P1(j)); - newtex.u() = (f.WT( (j+0)%3 ).u()+f.WT( (j+1)%3 ).u())/2.0; - newtex.v() = (f.WT( (j+0)%3 ).v()+f.WT( (j+1)%3 ).v())/2.0; - Point3f oldpoint = f.P2(j); - TexCoord2f oldtex = f.WT((j+2)%3); - - f.P2(j)=newpoint; - f.WT((j+2)%3).u()=newtex.u(); - f.WT((j+2)%3).v()=newtex.v(); - - temp.byFace(f,false); // computes the full quadric - if(! f.IsB(j) ) temp.Scale(0.05); - else temp.Scale(BorderWeight); - *this+=temp; - - f.P2(j)=oldpoint; - f.WT((j+2)%3).u()=oldtex.u(); - f.WT((j+2)%3).v()=oldtex.v(); - } - } + { + typedef typename FaceType::VertexType::CoordType CoordType; + double q = QualityFace(f); - } - else if( - (f.WT(1).u()-f.WT(0).u()) * (f.WT(2).v()-f.WT(0).v()) - - (f.WT(2).u()-f.WT(0).u()) * (f.WT(1).v()-f.WT(0).v()) - ) - byFace(f,false); // computes the real quadric - else // the area is zero also in the texture space - { - a[0]=a[1]=a[2]=a[3]=a[4]=a[5]=a[6]=a[7]=a[8]=a[9]=a[10]=a[11]=a[12]=a[13]=a[14]=0; - b[0]=b[1]=b[2]=b[3]=b[4]=0; - c=0; - } - } - - - // Computes the geometrical quadric if onlygeo == true and the real quadric if onlygeo == false + // if quality==0 then the geometrical quadric has just zeroes + if(q) + { + byFace(f,true); // computes the geometrical quadric + AddtoQ3(q1); + AddtoQ3(q2); + AddtoQ3(q3); + byFace(f,false); // computes the real quadric + for(int j=0;j<3;++j) + { + if( f.IsB(j) || QualityQuadric ) + { + Quadric5 temp; + TexCoord2f newtex; + CoordType newpoint = (f.P0(j)+f.P1(j))/2.0 + (f.N()/f.N().Norm())*Distance(f.P0(j),f.P1(j)); + newtex.u() = (f.WT( (j+0)%3 ).u()+f.WT( (j+1)%3 ).u())/2.0; + newtex.v() = (f.WT( (j+0)%3 ).v()+f.WT( (j+1)%3 ).v())/2.0; + CoordType oldpoint = f.P2(j); + TexCoord2f oldtex = f.WT((j+2)%3); + + f.P2(j)=newpoint; + f.WT((j+2)%3).u()=newtex.u(); + f.WT((j+2)%3).v()=newtex.v(); + + temp.byFace(f,false); // computes the full quadric + if(! f.IsB(j) ) temp.Scale(0.05); + else temp.Scale(BorderWeight); + *this+=temp; + + f.P2(j)=oldpoint; + f.WT((j+2)%3).u()=oldtex.u(); + f.WT((j+2)%3).v()=oldtex.v(); + } + } + + } + else if( + (f.WT(1).u()-f.WT(0).u()) * (f.WT(2).v()-f.WT(0).v()) - + (f.WT(2).u()-f.WT(0).u()) * (f.WT(1).v()-f.WT(0).v()) + ) + byFace(f,false); // computes the real quadric + else // the area is zero also in the texture space + { + a[0]=a[1]=a[2]=a[3]=a[4]=a[5]=a[6]=a[7]=a[8]=a[9]=a[10]=a[11]=a[12]=a[13]=a[14]=0; + b[0]=b[1]=b[2]=b[3]=b[4]=0; + c=0; + } + } + + + // Computes the geometrical quadric if onlygeo == true and the real quadric if onlygeo == false template void byFace(FaceType &fi, bool onlygeo) - { - //assert(onlygeo==false); - ScalarType p[5]; - ScalarType q[5]; - ScalarType r[5]; + { + //assert(onlygeo==false); + ScalarType p[5]; + ScalarType q[5]; + ScalarType r[5]; // ScalarType A[5][5]; - ScalarType e1[5]; - ScalarType e2[5]; + ScalarType e1[5]; + ScalarType e2[5]; - // computes p - p[0] = fi.P(0).X(); - p[1] = fi.P(0).Y(); - p[2] = fi.P(0).Z(); - p[3] = fi.WT(0).u(); - p[4] = fi.WT(0).v(); + // computes p + p[0] = fi.P(0).X(); + p[1] = fi.P(0).Y(); + p[2] = fi.P(0).Z(); + p[3] = fi.WT(0).u(); + p[4] = fi.WT(0).v(); - // computes q - q[0] = fi.P(1).X(); - q[1] = fi.P(1).Y(); - q[2] = fi.P(1).Z(); - q[3] = fi.WT(1).u(); - q[4] = fi.WT(1).v(); + // computes q + q[0] = fi.P(1).X(); + q[1] = fi.P(1).Y(); + q[2] = fi.P(1).Z(); + q[3] = fi.WT(1).u(); + q[4] = fi.WT(1).v(); - // computes r - r[0] = fi.P(2).X(); - r[1] = fi.P(2).Y(); - r[2] = fi.P(2).Z(); - r[3] = fi.WT(2).u(); - r[4] = fi.WT(2).v(); + // computes r + r[0] = fi.P(2).X(); + r[1] = fi.P(2).Y(); + r[2] = fi.P(2).Z(); + r[3] = fi.WT(2).u(); + r[4] = fi.WT(2).v(); - if(onlygeo) { - p[3] = 0; q[3] = 0; r[3] = 0; - p[4] = 0; q[4] = 0; r[4] = 0; - } + if(onlygeo) { + p[3] = 0; q[3] = 0; r[3] = 0; + p[4] = 0; q[4] = 0; r[4] = 0; + } - ComputeE1E2(p,q,r,e1,e2); - ComputeQuadricFromE1E2(e1,e2,p); - - if(IsValid()) return; + ComputeE1E2(p,q,r,e1,e2); + ComputeQuadricFromE1E2(e1,e2,p); + + if(IsValid()) return; // qDebug("Warning: failed to find a good 5D quadric try to permute stuff."); - - /* - When c is very close to 0, loss of precision causes it to be computed as a negative number, - which is invalid for a quadric. Vertex switches are performed in order to try to obtain a smaller - loss of precision. The one with the smallest error is chosen. - */ - double minerror = std::numeric_limits::max(); - int minerror_index = 0; - for(int i = 0; i < 7; i++) // tries the 6! configurations and chooses the one with the smallest error - { - switch(i) - { - case 0: - break; - case 1: - case 3: - case 5: - swapv(q,r); - break; - case 2: - case 4: - swapv(p,r); - break; - case 6: // every swap has loss of precision - swapv(p,r); - for(int j = 0; j <= minerror_index; j++) - { - switch(j) - { - case 0: - break; - case 1: - case 3: - case 5: - swapv(q,r); - break; - case 2: - case 4: - swapv(p,r); - break; - default: - assert(0); - } - } - minerror_index = -1; - break; - default: - assert(0); - } - + + /* + When c is very close to 0, loss of precision causes it to be computed as a negative number, + which is invalid for a quadric. Vertex switches are performed in order to try to obtain a smaller + loss of precision. The one with the smallest error is chosen. + */ + double minerror = std::numeric_limits::max(); + int minerror_index = 0; + for(int i = 0; i < 7; i++) // tries the 6! configurations and chooses the one with the smallest error + { + switch(i) + { + case 0: + break; + case 1: + case 3: + case 5: + swapv(q,r); + break; + case 2: + case 4: + swapv(p,r); + break; + case 6: // every swap has loss of precision + swapv(p,r); + for(int j = 0; j <= minerror_index; j++) + { + switch(j) + { + case 0: + break; + case 1: + case 3: + case 5: + swapv(q,r); + break; + case 2: + case 4: + swapv(p,r); + break; + default: + assert(0); + } + } + minerror_index = -1; + break; + default: + assert(0); + } + ComputeE1E2(p,q,r,e1,e2); - ComputeQuadricFromE1E2(e1,e2,p); - - if(IsValid()) - return; - else if (minerror_index == -1) // the one with the smallest error has been computed - break; - else if(-c < minerror) - { - minerror = -c; - minerror_index = i; - } - } - // failed to find a valid vertex switch + ComputeQuadricFromE1E2(e1,e2,p); - // assert(-c <= 1e-8); // small error + if(IsValid()) + return; + else if (minerror_index == -1) // the one with the smallest error has been computed + break; + else if(-c < minerror) + { + minerror = -c; + minerror_index = i; + } + } + // failed to find a valid vertex switch - c = 0; // rounds up to zero - } + // assert(-c <= 1e-8); // small error + + c = 0; // rounds up to zero + } // Given three 5D points it compute an orthonormal basis e1 e2 void ComputeE1E2 (const ScalarType p[5], const ScalarType q[5], const ScalarType r[5], ScalarType e1[5], ScalarType e2[5]) const { - ScalarType diffe[5]; - ScalarType tmpmat[5][5]; - ScalarType tmpvec[5]; + ScalarType diffe[5]; + ScalarType tmpmat[5][5]; + ScalarType tmpvec[5]; // computes e1 - math::sub_vec5(q,p,e1); - math::normalize_vec5(e1); - - // computes e2 - math::sub_vec5(r,p,diffe); - math::outproduct5(e1,diffe,tmpmat); - math::prod_matvec5(tmpmat,e1,tmpvec); - math::sub_vec5(diffe,tmpvec,e2); - math::normalize_vec5(e2); + math::sub_vec5(q,p,e1); + math::normalize_vec5(e1); + + // computes e2 + math::sub_vec5(r,p,diffe); + math::outproduct5(e1,diffe,tmpmat); + math::prod_matvec5(tmpmat,e1,tmpvec); + math::sub_vec5(diffe,tmpvec,e2); + math::normalize_vec5(e2); } // Given two orthonormal 5D vectors lying on the plane and one of the three points of the triangle compute the quadric. -// Note it uses the same notation of the original garland 98 paper. +// Note it uses the same notation of the original garland 98 paper. void ComputeQuadricFromE1E2(ScalarType e1[5], ScalarType e2[5], ScalarType p[5] ) { - // computes A - a[0] = 1; - a[1] = 0; - a[2] = 0; - a[3] = 0; - a[4] = 0; - a[5] = 1; - a[6] = 0; - a[7] = 0; - a[8] = 0; - a[9] = 1; - a[10] = 0; - a[11] = 0; - a[12] = 1; - a[13] = 0; - a[14] = 1; + // computes A + a[0] = 1; + a[1] = 0; + a[2] = 0; + a[3] = 0; + a[4] = 0; + a[5] = 1; + a[6] = 0; + a[7] = 0; + a[8] = 0; + a[9] = 1; + a[10] = 0; + a[11] = 0; + a[12] = 1; + a[13] = 0; + a[14] = 1; - ScalarType tmpsymmat[15]; // a compactly stored 5x5 symmetric matrix. - math::symprod_vvt5(tmpsymmat,e1); - math::sub_symmat5(a,tmpsymmat); - math::symprod_vvt5(tmpsymmat,e2); - math::sub_symmat5(a,tmpsymmat); + ScalarType tmpsymmat[15]; // a compactly stored 5x5 symmetric matrix. + math::symprod_vvt5(tmpsymmat,e1); + math::sub_symmat5(a,tmpsymmat); + math::symprod_vvt5(tmpsymmat,e2); + math::sub_symmat5(a,tmpsymmat); - ScalarType pe1; - ScalarType pe2; + ScalarType pe1; + ScalarType pe2; - pe1 = math::inproduct5(p,e1); - pe2 = math::inproduct5(p,e2); - - // computes b - ScalarType tmpvec[5]; + pe1 = math::inproduct5(p,e1); + pe2 = math::inproduct5(p,e2); - tmpvec[0] = pe1*e1[0] + pe2*e2[0]; - tmpvec[1] = pe1*e1[1] + pe2*e2[1]; - tmpvec[2] = pe1*e1[2] + pe2*e2[2]; - tmpvec[3] = pe1*e1[3] + pe2*e2[3]; - tmpvec[4] = pe1*e1[4] + pe2*e2[4]; + // computes b + ScalarType tmpvec[5]; - math::sub_vec5(tmpvec,p,b); + tmpvec[0] = pe1*e1[0] + pe2*e2[0]; + tmpvec[1] = pe1*e1[1] + pe2*e2[1]; + tmpvec[2] = pe1*e1[2] + pe2*e2[2]; + tmpvec[3] = pe1*e1[3] + pe2*e2[3]; + tmpvec[4] = pe1*e1[4] + pe2*e2[4]; - // computes c - c = math::inproduct5(p,p)-pe1*pe1-pe2*pe2; + math::sub_vec5(tmpvec,p,b); + + // computes c + c = math::inproduct5(p,p)-pe1*pe1-pe2*pe2; } - + static bool Gauss55( ScalarType x[], ScalarType C[5][5+1] ) - { - const ScalarType keps = (ScalarType)1e-6; - int i,j,k; + { + const ScalarType keps = (ScalarType)1e-6; + int i,j,k; - ScalarType eps; // Determina valore cond. - eps = math::Abs(C[0][0]); - for(i=1;i<5;++i) - { - ScalarType t = math::Abs(C[i][i]); - if( eps vma) - { - vma = t; - ma = k; - } - } - if (vma vma) + { + vma = t; + ma = k; + } + } + if (vma=0; i--) // Sostituzione - { - ScalarType t; - for (t = 0.0, j = i + 1; j < 5; j++) - t += C[i][j] * x[j]; - x[i] = (C[i][5] - t) / C[i][i]; + for (i=5-1; i>=0; i--) // Sostituzione + { + ScalarType t; + for (t = 0.0, j = i + 1; j < 5; j++) + t += C[i][j] * x[j]; + x[i] = (C[i][5] - t) / C[i][i]; if(math::IsNAN(x[i])) return false; assert(!math::IsNAN(x[i])); - } + } - return true; - } + return true; + } - - // computes the minimum of the quadric, imposing the geometrical constraint (geo[3] and geo[4] are obviosly ignored) + + // computes the minimum of the quadric, imposing the geometrical constraint (geo[3] and geo[4] are obviosly ignored) bool MinimumWithGeoContraints(ScalarType x[5],const ScalarType geo[5]) const - { - x[0] = geo[0]; - x[1] = geo[1]; - x[2] = geo[2]; + { + x[0] = geo[0]; + x[1] = geo[1]; + x[2] = geo[2]; - ScalarType C3 = -(b[3]+geo[0]*a[3]+geo[1]*a[7]+geo[2]*a[10]); - ScalarType C4 = -(b[4]+geo[0]*a[4]+geo[1]*a[8]+geo[2]*a[11]); + ScalarType C3 = -(b[3]+geo[0]*a[3]+geo[1]*a[7]+geo[2]*a[10]); + ScalarType C4 = -(b[4]+geo[0]*a[4]+geo[1]*a[8]+geo[2]*a[11]); - if(a[12] != 0) - { - double tmp = (a[14]-a[13]*a[13]/a[12]); + if(a[12] != 0) + { + double tmp = (a[14]-a[13]*a[13]/a[12]); - if(tmp == 0) - return false; + if(tmp == 0) + return false; - x[4] = (C4 - a[13]*C3/a[12])/ tmp; - x[3] = (C3 - a[13]*x[4])/a[12]; - } - else - { - if(a[13] == 0) - return false; + x[4] = (C4 - a[13]*C3/a[12])/ tmp; + x[3] = (C3 - a[13]*x[4])/a[12]; + } + else + { + if(a[13] == 0) + return false; - x[4] = C3/a[13]; - x[3] = (C4 - a[14]*x[4])/a[13]; - } + x[4] = C3/a[13]; + x[3] = (C4 - a[14]*x[4])/a[13]; + } for(int i=0;i<5;++i) if( math::IsNAN(x[i])) return false; //assert(!math::IsNAN(x[i])); - return true; - } + return true; + } - // computes the minimum of the quadric + // computes the minimum of the quadric bool Minimum(ScalarType x[5]) const - { - ScalarType C[5][6]; + { + ScalarType C[5][6]; - C[0][0] = a[0]; - C[0][1] = a[1]; - C[0][2] = a[2]; - C[0][3] = a[3]; - C[0][4] = a[4]; - C[1][0] = a[1]; - C[1][1] = a[5]; - C[1][2] = a[6]; - C[1][3] = a[7]; - C[1][4] = a[8]; - C[2][0] = a[2]; - C[2][1] = a[6]; - C[2][2] = a[9]; - C[2][3] = a[10]; - C[2][4] = a[11]; - C[3][0] = a[3]; - C[3][1] = a[7]; - C[3][2] = a[10]; - C[3][3] = a[12]; - C[3][4] = a[13]; - C[4][0] = a[4]; - C[4][1] = a[8]; - C[4][2] = a[11]; - C[4][3] = a[13]; - C[4][4] = a[14]; + C[0][0] = a[0]; + C[0][1] = a[1]; + C[0][2] = a[2]; + C[0][3] = a[3]; + C[0][4] = a[4]; + C[1][0] = a[1]; + C[1][1] = a[5]; + C[1][2] = a[6]; + C[1][3] = a[7]; + C[1][4] = a[8]; + C[2][0] = a[2]; + C[2][1] = a[6]; + C[2][2] = a[9]; + C[2][3] = a[10]; + C[2][4] = a[11]; + C[3][0] = a[3]; + C[3][1] = a[7]; + C[3][2] = a[10]; + C[3][3] = a[12]; + C[3][4] = a[13]; + C[4][0] = a[4]; + C[4][1] = a[8]; + C[4][2] = a[11]; + C[4][3] = a[13]; + C[4][4] = a[14]; - C[0][5]=-b[0]; - C[1][5]=-b[1]; - C[2][5]=-b[2]; - C[3][5]=-b[3]; - C[4][5]=-b[4]; - - return Gauss55(&(x[0]),C); - } + C[0][5]=-b[0]; + C[1][5]=-b[1]; + C[2][5]=-b[2]; + C[3][5]=-b[3]; + C[4][5]=-b[4]; - void operator = ( const Quadric5 & q ) // Assegna una quadrica - { - //assert( IsValid() ); - assert( q.IsValid() ); + return Gauss55(&(x[0]),C); + } - a[0] = q.a[0]; - a[1] = q.a[1]; - a[2] = q.a[2]; - a[3] = q.a[3]; - a[4] = q.a[4]; - a[5] = q.a[5]; - a[6] = q.a[6]; - a[7] = q.a[7]; - a[8] = q.a[8]; - a[9] = q.a[9]; - a[10] = q.a[10]; - a[11] = q.a[11]; - a[12] = q.a[12]; - a[13] = q.a[13]; - a[14] = q.a[14]; + void operator = ( const Quadric5 & q ) // Assegna una quadrica + { + //assert( IsValid() ); + assert( q.IsValid() ); - b[0] = q.b[0]; - b[1] = q.b[1]; - b[2] = q.b[2]; - b[3] = q.b[3]; - b[4] = q.b[4]; + a[0] = q.a[0]; + a[1] = q.a[1]; + a[2] = q.a[2]; + a[3] = q.a[3]; + a[4] = q.a[4]; + a[5] = q.a[5]; + a[6] = q.a[6]; + a[7] = q.a[7]; + a[8] = q.a[8]; + a[9] = q.a[9]; + a[10] = q.a[10]; + a[11] = q.a[11]; + a[12] = q.a[12]; + a[13] = q.a[13]; + a[14] = q.a[14]; - c = q.c; - } + b[0] = q.b[0]; + b[1] = q.b[1]; + b[2] = q.b[2]; + b[3] = q.b[3]; + b[4] = q.b[4]; - // sums the geometrical and the real quadrics - void operator += ( const Quadric5 & q ) - { - //assert( IsValid() ); - assert( q.IsValid() ); + c = q.c; + } - a[0] += q.a[0]; - a[1] += q.a[1]; - a[2] += q.a[2]; - a[3] += q.a[3]; - a[4] += q.a[4]; - a[5] += q.a[5]; - a[6] += q.a[6]; - a[7] += q.a[7]; - a[8] += q.a[8]; - a[9] += q.a[9]; - a[10] += q.a[10]; - a[11] += q.a[11]; - a[12] += q.a[12]; - a[13] += q.a[13]; - a[14] += q.a[14]; + // sums the geometrical and the real quadrics + void operator += ( const Quadric5 & q ) + { + //assert( IsValid() ); + assert( q.IsValid() ); - b[0] += q.b[0]; - b[1] += q.b[1]; - b[2] += q.b[2]; - b[3] += q.b[3]; - b[4] += q.b[4]; + a[0] += q.a[0]; + a[1] += q.a[1]; + a[2] += q.a[2]; + a[3] += q.a[3]; + a[4] += q.a[4]; + a[5] += q.a[5]; + a[6] += q.a[6]; + a[7] += q.a[7]; + a[8] += q.a[8]; + a[9] += q.a[9]; + a[10] += q.a[10]; + a[11] += q.a[11]; + a[12] += q.a[12]; + a[13] += q.a[13]; + a[14] += q.a[14]; - c += q.c; + b[0] += q.b[0]; + b[1] += q.b[1]; + b[2] += q.b[2]; + b[3] += q.b[3]; + b[4] += q.b[4]; - } + c += q.c; + + } /* it sums the real quadric of the class with a quadric obtained by the geometrical quadric of the vertex. This quadric is obtained extending to five dimensions the geometrical quadric and simulating that it has been -obtained by sums of 5-dimension quadrics which were computed using vertexes and faces with always the same values +obtained by sums of 5-dimension quadrics which were computed using vertexes and faces with always the same values in the fourth and fifth dimensions (respectly the function parameter u and the function parameter v). this allows to simulate the inexistant continuity in vertexes with multiple texture coords however this continuity is still inexistant, so even if the algorithm makes a good collapse with this expedient,it obviously computes bad the priority......this should be adjusted with the extra weight user parameter through..... */ - void inline Sum3 (const math::Quadric & q3, float u, float v) + void inline Sum3 (const math::Quadric & q3, float u, float v) { - assert( q3.IsValid() ); + assert( q3.IsValid() ); - a[0] += q3.a[0]; - a[1] += q3.a[1]; - a[2] += q3.a[2]; + a[0] += q3.a[0]; + a[1] += q3.a[1]; + a[2] += q3.a[2]; - a[5] += q3.a[3]; - a[6] += q3.a[4]; + a[5] += q3.a[3]; + a[6] += q3.a[4]; - a[9] += q3.a[5]; - - a[12] += 1; - a[14] += 1; + a[9] += q3.a[5]; - b[0] += q3.b[0]; - b[1] += q3.b[1]; - b[2] += q3.b[2]; + a[12] += 1; + a[14] += 1; - b[3] -= u; - b[4] -= v; + b[0] += q3.b[0]; + b[1] += q3.b[1]; + b[2] += q3.b[2]; - c += q3.c + u*u + v*v; + b[3] -= u; + b[4] -= v; - } - - void Scale(ScalarType val) - { - for(int i=0;i<15;++i) - a[i]*=val; - for(int i=0;i<5;++i) - b[i]*=val; - c*=val; - } + c += q3.c + u*u + v*v; + + } + + void Scale(ScalarType val) + { + for(int i=0;i<15;++i) + a[i]*=val; + for(int i=0;i<5;++i) + b[i]*=val; + c*=val; + } // returns the quadric value in v ScalarType Apply(const ScalarType v[5]) const - { + { - assert( IsValid() ); + assert( IsValid() ); - ScalarType tmpmat[5][5]; - ScalarType tmpvec[5]; + ScalarType tmpmat[5][5]; + ScalarType tmpvec[5]; - tmpmat[0][0] = a[0]; - tmpmat[0][1] = tmpmat[1][0] = a[1]; - tmpmat[0][2] = tmpmat[2][0] = a[2]; - tmpmat[0][3] = tmpmat[3][0] = a[3]; - tmpmat[0][4] = tmpmat[4][0] = a[4]; - - tmpmat[1][1] = a[5]; - tmpmat[1][2] = tmpmat[2][1] = a[6]; - tmpmat[1][3] = tmpmat[3][1] = a[7]; - tmpmat[1][4] = tmpmat[4][1] = a[8]; + tmpmat[0][0] = a[0]; + tmpmat[0][1] = tmpmat[1][0] = a[1]; + tmpmat[0][2] = tmpmat[2][0] = a[2]; + tmpmat[0][3] = tmpmat[3][0] = a[3]; + tmpmat[0][4] = tmpmat[4][0] = a[4]; - tmpmat[2][2] = a[9]; - tmpmat[2][3] = tmpmat[3][2] = a[10]; - tmpmat[2][4] = tmpmat[4][2] = a[11]; + tmpmat[1][1] = a[5]; + tmpmat[1][2] = tmpmat[2][1] = a[6]; + tmpmat[1][3] = tmpmat[3][1] = a[7]; + tmpmat[1][4] = tmpmat[4][1] = a[8]; - tmpmat[3][3] = a[12]; - tmpmat[3][4] = tmpmat[4][3] = a[13]; + tmpmat[2][2] = a[9]; + tmpmat[2][3] = tmpmat[3][2] = a[10]; + tmpmat[2][4] = tmpmat[4][2] = a[11]; - tmpmat[4][4] = a[14]; + tmpmat[3][3] = a[12]; + tmpmat[3][4] = tmpmat[4][3] = a[13]; - math::prod_matvec5(tmpmat,v,tmpvec); + tmpmat[4][4] = a[14]; - return math::inproduct5(v,tmpvec) + 2*math::inproduct5(b,v) + c; + math::prod_matvec5(tmpmat,v,tmpvec); - } + return math::inproduct5(v,tmpvec) + 2*math::inproduct5(b,v) + c; + + } }; } // end namespace vcg;