fixed const correctness for Inertia and some Stat functions + code cleaning
This commit is contained in:
parent
bd1b1a937b
commit
95f5550951
|
@ -53,16 +53,16 @@ namespace vcg
|
|||
template <class MeshType>
|
||||
class Inertia
|
||||
{
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
|
||||
private :
|
||||
enum {X=0,Y=1,Z=2};
|
||||
|
@ -188,50 +188,51 @@ void CompFaceIntegrals(const FaceType &f)
|
|||
It requires a watertight mesh with per face normals.
|
||||
|
||||
*/
|
||||
void Compute(MeshType &m)
|
||||
void Compute(const MeshType &m)
|
||||
{
|
||||
tri::UpdateNormal<MeshType>::PerFaceNormalized(m);
|
||||
double nx, ny, nz;
|
||||
double nx, ny, nz;
|
||||
|
||||
T0 = T1[X] = T1[Y] = T1[Z]
|
||||
= T2[X] = T2[Y] = T2[Z]
|
||||
= TP[X] = TP[Y] = TP[Z] = 0;
|
||||
for (auto fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD() && vcg::DoubleArea(*fi)>std::numeric_limits<float>::min()) {
|
||||
const FaceType &f=(*fi);
|
||||
T0 = T1[X] = T1[Y] = T1[Z]
|
||||
= T2[X] = T2[Y] = T2[Z]
|
||||
= TP[X] = TP[Y] = TP[Z] = 0;
|
||||
for (auto fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD() && vcg::DoubleArea(*fi)>std::numeric_limits<float>::min())
|
||||
{
|
||||
const FaceType &f=(*fi);
|
||||
const auto fn = vcg::NormalizedTriangleNormal(f);
|
||||
|
||||
nx = fabs(f.N()[0]);
|
||||
ny = fabs(f.N()[1]);
|
||||
nz = fabs(f.N()[2]);
|
||||
if (nx > ny && nx > nz) C = X;
|
||||
else C = (ny > nz) ? Y : Z;
|
||||
A = (C + 1) % 3;
|
||||
B = (A + 1) % 3;
|
||||
nx = fabs(fn[0]);
|
||||
ny = fabs(fn[1]);
|
||||
nz = fabs(fn[2]);
|
||||
if (nx > ny && nx > nz) C = X;
|
||||
else C = (ny > nz) ? Y : Z;
|
||||
A = (C + 1) % 3;
|
||||
B = (A + 1) % 3;
|
||||
|
||||
CompFaceIntegrals(f);
|
||||
CompFaceIntegrals(f);
|
||||
|
||||
T0 += f.N()[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
|
||||
T0 += fn[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
|
||||
|
||||
T1[A] += f.N()[A] * Faa;
|
||||
T1[B] += f.N()[B] * Fbb;
|
||||
T1[C] += f.N()[C] * Fcc;
|
||||
T2[A] += f.N()[A] * Faaa;
|
||||
T2[B] += f.N()[B] * Fbbb;
|
||||
T2[C] += f.N()[C] * Fccc;
|
||||
TP[A] += f.N()[A] * Faab;
|
||||
TP[B] += f.N()[B] * Fbbc;
|
||||
TP[C] += f.N()[C] * Fcca;
|
||||
}
|
||||
T1[A] += fn[A] * Faa;
|
||||
T1[B] += fn[B] * Fbb;
|
||||
T1[C] += fn[C] * Fcc;
|
||||
T2[A] += fn[A] * Faaa;
|
||||
T2[B] += fn[B] * Fbbb;
|
||||
T2[C] += fn[C] * Fccc;
|
||||
TP[A] += fn[A] * Faab;
|
||||
TP[B] += fn[B] * Fbbc;
|
||||
TP[C] += fn[C] * Fcca;
|
||||
}
|
||||
|
||||
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
|
||||
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
|
||||
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
|
||||
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
|
||||
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
|
||||
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
|
||||
}
|
||||
|
||||
/*! \brief Return the Volume (or mass) of the mesh.
|
||||
|
||||
Meaningful only if the mesh is watertight.
|
||||
*/
|
||||
ScalarType Mass()
|
||||
ScalarType Mass(void) const
|
||||
{
|
||||
return static_cast<ScalarType>(T0);
|
||||
}
|
||||
|
@ -240,15 +241,17 @@ ScalarType Mass()
|
|||
|
||||
Meaningful only if the mesh is watertight.
|
||||
*/
|
||||
Point3<ScalarType> CenterOfMass()
|
||||
Point3<ScalarType> CenterOfMass(void) const
|
||||
{
|
||||
Point3<ScalarType> r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
return r;
|
||||
Point3<ScalarType> r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
return r;
|
||||
}
|
||||
void InertiaTensor(Matrix33<ScalarType> &J ){
|
||||
|
||||
void InertiaTensor(Matrix33<ScalarType> &J) const
|
||||
{
|
||||
Point3<ScalarType> r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
|
@ -270,27 +273,27 @@ void InertiaTensor(Matrix33<ScalarType> &J ){
|
|||
}
|
||||
|
||||
//void InertiaTensor(Matrix44<ScalarType> &J )
|
||||
void InertiaTensor(Eigen::Matrix3d &J )
|
||||
void InertiaTensor(Eigen::Matrix3d &J) const
|
||||
{
|
||||
J=Eigen::Matrix3d::Identity();
|
||||
Point3d r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
/* compute inertia tensor */
|
||||
J(X,X) = (T2[Y] + T2[Z]);
|
||||
J(Y,Y) = (T2[Z] + T2[X]);
|
||||
J(Z,Z) = (T2[X] + T2[Y]);
|
||||
J(X,Y) = J(Y,X) = - TP[X];
|
||||
J(Y,Z) = J(Z,Y) = - TP[Y];
|
||||
J(Z,X) = J(X,Z) = - TP[Z];
|
||||
J=Eigen::Matrix3d::Identity();
|
||||
Point3d r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
/* compute inertia tensor */
|
||||
J(X,X) = (T2[Y] + T2[Z]);
|
||||
J(Y,Y) = (T2[Z] + T2[X]);
|
||||
J(Z,Z) = (T2[X] + T2[Y]);
|
||||
J(X,Y) = J(Y,X) = - TP[X];
|
||||
J(Y,Z) = J(Z,Y) = - TP[Y];
|
||||
J(Z,X) = J(X,Z) = - TP[Z];
|
||||
|
||||
J(X,X) -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
|
||||
J(Y,Y) -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
|
||||
J(Z,Z) -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
|
||||
J(X,Y) = J(Y,X) += T0 * r[X] * r[Y];
|
||||
J(Y,Z) = J(Z,Y) += T0 * r[Y] * r[Z];
|
||||
J(Z,X) = J(X,Z) += T0 * r[Z] * r[X];
|
||||
J(X,X) -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
|
||||
J(Y,Y) -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
|
||||
J(Z,Z) -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
|
||||
J(X,Y) = J(Y,X) += T0 * r[X] * r[Y];
|
||||
J(Y,Z) = J(Z,Y) += T0 * r[Y] * r[Z];
|
||||
J(Z,X) = J(X,Z) += T0 * r[Z] * r[X];
|
||||
}
|
||||
|
||||
|
||||
|
@ -299,7 +302,7 @@ void InertiaTensor(Eigen::Matrix3d &J )
|
|||
|
||||
The result is factored as eigenvalues and eigenvectors (as ROWS).
|
||||
*/
|
||||
void InertiaTensorEigen(Matrix33<ScalarType> &EV, Point3<ScalarType> &ev )
|
||||
void InertiaTensorEigen(Matrix33<ScalarType> &EV, Point3<ScalarType> &ev) const
|
||||
{
|
||||
Eigen::Matrix3d it;
|
||||
InertiaTensor(it);
|
||||
|
@ -376,7 +379,7 @@ static void Covariance(const MeshType & m, vcg::Point3<ScalarType> & bary, vcg::
|
|||
}
|
||||
}; // end class Inertia
|
||||
|
||||
} // end namespace tri
|
||||
} // end namespace tri
|
||||
} // end namespace vcg
|
||||
|
||||
|
||||
|
|
|
@ -239,18 +239,18 @@ public:
|
|||
return barycenter/areaSum;
|
||||
}
|
||||
|
||||
static ScalarType ComputeTetraMeshVolume(MeshType & m)
|
||||
static ScalarType ComputeTetraMeshVolume(const MeshType & m)
|
||||
{
|
||||
ScalarType V = 0;
|
||||
|
||||
ForEachTetra(m, [&V] (TetraType & t) {
|
||||
ForEachTetra(m, [&V] (const TetraType & t) {
|
||||
V += Tetra::ComputeVolume(t);
|
||||
});
|
||||
|
||||
return V;
|
||||
}
|
||||
|
||||
static ScalarType ComputeMeshVolume(MeshType & m)
|
||||
static ScalarType ComputeMeshVolume(const MeshType & m)
|
||||
{
|
||||
Inertia<MeshType> I(m);
|
||||
return I.Mass();
|
||||
|
|
Loading…
Reference in New Issue