tetra smooth
This commit is contained in:
parent
d2dd2d01f0
commit
81a93f7756
|
|
@ -217,25 +217,24 @@ class Smooth
|
|||
|
||||
//if we are applying to a tetrahedral mesh:
|
||||
ForEachTetra(m, [&](TetraType &t) {
|
||||
for (int i = 0; i < 4; ++i)
|
||||
if (!t.IsB(i))
|
||||
for (int i = 0; i < 6; ++i)
|
||||
{
|
||||
VertexPointer v0, v1, v2;
|
||||
v0 = t.V(Tetra::VofF(i, 0));
|
||||
v1 = t.V(Tetra::VofF(i, 1));
|
||||
v2 = t.V(Tetra::VofF(i, 2));
|
||||
VertexPointer v0, v1, vo0, vo1;
|
||||
v0 = t.V(Tetra::VofE(i, 0));
|
||||
v1 = t.V(Tetra::VofE(i, 1));
|
||||
|
||||
TD[v0].sum += v1->P() * weight;
|
||||
TD[v0].sum += v2->P() * weight;
|
||||
TD[v0].cnt += 2 * weight;
|
||||
vo0 = t.V(Tetra::VofE(5 - i, 0));
|
||||
vo1 = t.V(Tetra::VofE(5 - i, 1));
|
||||
|
||||
TD[v1].sum += v0->P() * weight;
|
||||
TD[v1].sum += v2->P() * weight;
|
||||
TD[v1].cnt += 2 * weight;
|
||||
ScalarType angle = Tetra::DihedralAngle(t, 5 - i);
|
||||
ScalarType length = vcg::Distance(vo0->P(), vo1->P());
|
||||
|
||||
TD[v2].sum += v0->P() * weight;
|
||||
TD[v2].sum += v1->P() * weight;
|
||||
TD[v2].cnt += 2 * weight;
|
||||
weight = (length / 6.) * (tan(M_PI / 2. - angle));
|
||||
|
||||
TD[v0].sum += v1->cP() * weight;
|
||||
TD[v1].sum += v0->cP() * weight;
|
||||
TD[v0].cnt += weight;
|
||||
TD[v1].cnt += weight;
|
||||
}
|
||||
});
|
||||
|
||||
|
|
@ -258,28 +257,28 @@ class Smooth
|
|||
}
|
||||
});
|
||||
|
||||
ForEachTetra(m, [&](TetraType &t) {
|
||||
for (int i = 0; i < 4; ++i)
|
||||
if (t.IsB(i))
|
||||
{
|
||||
VertexPointer v0, v1, v2;
|
||||
v0 = t.V(Tetra::VofF(i, 0));
|
||||
v1 = t.V(Tetra::VofF(i, 1));
|
||||
v2 = t.V(Tetra::VofF(i, 2));
|
||||
// ForEachTetra(m, [&](TetraType &t) {
|
||||
// for (int i = 0; i < 4; ++i)
|
||||
// if (t.IsB(i))
|
||||
// {
|
||||
// VertexPointer v0, v1, v2;
|
||||
// v0 = t.V(Tetra::VofF(i, 0));
|
||||
// v1 = t.V(Tetra::VofF(i, 1));
|
||||
// v2 = t.V(Tetra::VofF(i, 2));
|
||||
|
||||
TD[v0].sum += v1->P() * weight;
|
||||
TD[v0].sum += v2->P() * weight;
|
||||
TD[v0].cnt += 2 * weight;
|
||||
// TD[v0].sum += v1->P();
|
||||
// TD[v0].sum += v2->P();
|
||||
// TD[v0].cnt += 2;
|
||||
|
||||
TD[v1].sum += v0->P() * weight;
|
||||
TD[v1].sum += v2->P() * weight;
|
||||
TD[v1].cnt += 2 * weight;
|
||||
// TD[v1].sum += v0->P();
|
||||
// TD[v1].sum += v2->P();
|
||||
// TD[v1].cnt += 2;
|
||||
|
||||
TD[v2].sum += v0->P() * weight;
|
||||
TD[v2].sum += v1->P() * weight;
|
||||
TD[v2].cnt += 2 * weight;
|
||||
}
|
||||
});
|
||||
// TD[v2].sum += v0->P();
|
||||
// TD[v2].sum += v1->P();
|
||||
// TD[v2].cnt += 2;
|
||||
// }
|
||||
// });
|
||||
|
||||
FaceIterator fi;
|
||||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,495 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004-2016 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
#ifndef __VCG_IMPLICIT_TETRA_SMOOTHER
|
||||
#define __VCG_IMPLICIT_TETRA_SMOOTHER
|
||||
|
||||
#include <Eigen/Sparse>
|
||||
#include <vcg/complex/algorithms/mesh_to_matrix.h>
|
||||
#include <vcg/complex/algorithms/update/quality.h>
|
||||
#include <vcg/complex/algorithms/smooth.h>
|
||||
|
||||
#define PENALTY 10000
|
||||
|
||||
namespace vcg
|
||||
{
|
||||
|
||||
template <class MeshType>
|
||||
class ImplicitTetraSmoother
|
||||
{
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::TetraType TetraType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename Eigen::Matrix<ScalarType, Eigen::Dynamic, Eigen::Dynamic> MatrixXm;
|
||||
|
||||
public:
|
||||
struct FaceConstraint
|
||||
{
|
||||
int numF;
|
||||
std::vector<ScalarType> BarycentricW;
|
||||
CoordType TargetPos;
|
||||
|
||||
FaceConstraint()
|
||||
{
|
||||
numF = -1;
|
||||
}
|
||||
|
||||
FaceConstraint(int _numF,
|
||||
const std::vector<ScalarType> &_BarycentricW,
|
||||
const CoordType &_TargetPos)
|
||||
{
|
||||
numF = _numF;
|
||||
BarycentricW = std::vector<ScalarType>(_BarycentricW.begin(), _BarycentricW.end());
|
||||
TargetPos = _TargetPos;
|
||||
}
|
||||
};
|
||||
|
||||
struct Parameter
|
||||
{
|
||||
//the amount of smoothness, useful only if we set the mass matrix
|
||||
ScalarType lambda;
|
||||
//the use of mass matrix to keep the mesh close to its original position
|
||||
//(weighted per area distributed on vertices)
|
||||
bool useMassMatrix;
|
||||
//this bool is used to fix the border vertices of the mesh or not
|
||||
bool fixBorder;
|
||||
//this bool is used to set if cotangent weight is used, this flag to false means uniform laplacian
|
||||
bool useCotWeight;
|
||||
//use this weight for the laplacian when the cotangent one is not used
|
||||
ScalarType lapWeight;
|
||||
//the set of fixed vertices
|
||||
std::vector<int> FixedV;
|
||||
//the set of faces for barycentric constraints
|
||||
std::vector<FaceConstraint> ConstrainedF;
|
||||
//the degree of laplacian
|
||||
int degree;
|
||||
//this is to say if we smooth the positions or the quality
|
||||
bool SmoothQ;
|
||||
|
||||
Parameter()
|
||||
{
|
||||
degree = 2;
|
||||
lambda = 0.05;
|
||||
useMassMatrix = true;
|
||||
fixBorder = true;
|
||||
useCotWeight = false;
|
||||
lapWeight = 1;
|
||||
SmoothQ = false;
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
static void InitSparse(const std::vector<std::pair<int, int>> &Index,
|
||||
const std::vector<ScalarType> &Values,
|
||||
const int m,
|
||||
const int n,
|
||||
Eigen::SparseMatrix<ScalarType> &X)
|
||||
{
|
||||
assert(Index.size() == Values.size());
|
||||
|
||||
std::vector<Eigen::Triplet<ScalarType>> IJV;
|
||||
IJV.reserve(Index.size());
|
||||
|
||||
for (size_t i = 0; i < Index.size(); i++)
|
||||
{
|
||||
int row = Index[i].first;
|
||||
int col = Index[i].second;
|
||||
ScalarType val = Values[i];
|
||||
|
||||
assert(row < m);
|
||||
assert(col < n);
|
||||
|
||||
IJV.push_back(Eigen::Triplet<ScalarType>(row, col, val));
|
||||
}
|
||||
X.resize(m, n);
|
||||
X.setFromTriplets(IJV.begin(), IJV.end());
|
||||
}
|
||||
|
||||
static void CollectHardConstraints(MeshType &mesh, const Parameter &SParam,
|
||||
std::vector<std::pair<int, int>> &IndexC,
|
||||
std::vector<ScalarType> &WeightC,
|
||||
bool SmoothQ = false)
|
||||
{
|
||||
std::vector<int> To_Fix;
|
||||
|
||||
//collect fixed vert
|
||||
if (SParam.fixBorder)
|
||||
{
|
||||
//add penalization constra
|
||||
for (size_t i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
if (!mesh.vert[i].IsB())
|
||||
continue;
|
||||
To_Fix.push_back(i);
|
||||
}
|
||||
}
|
||||
//add additional fixed vertices constraint
|
||||
To_Fix.insert(To_Fix.end(), SParam.FixedV.begin(), SParam.FixedV.end());
|
||||
|
||||
//sort and make them unique
|
||||
std::sort(To_Fix.begin(), To_Fix.end());
|
||||
typename std::vector<int>::iterator it = std::unique(To_Fix.begin(), To_Fix.end());
|
||||
To_Fix.resize(std::distance(To_Fix.begin(), it));
|
||||
|
||||
for (size_t i = 0; i < To_Fix.size(); i++)
|
||||
{
|
||||
if (!SmoothQ)
|
||||
{
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
int IndexV = (To_Fix[i] * 3) + j;
|
||||
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
|
||||
WeightC.push_back((ScalarType)PENALTY);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int IndexV = To_Fix[i];
|
||||
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
|
||||
WeightC.push_back((ScalarType)PENALTY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void CollectBarycentricConstraints(MeshType &mesh,
|
||||
const Parameter &SParam,
|
||||
std::vector<std::pair<int, int>> &IndexC,
|
||||
std::vector<ScalarType> &WeightC,
|
||||
std::vector<int> &IndexRhs,
|
||||
std::vector<ScalarType> &ValueRhs)
|
||||
{
|
||||
ScalarType penalty;
|
||||
int baseIndex = mesh.vert.size();
|
||||
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
|
||||
{
|
||||
//get the index of the current constraint
|
||||
int IndexConstraint = baseIndex + i;
|
||||
|
||||
//add one hard constraint
|
||||
int FaceN = SParam.ConstrainedF[i].numF;
|
||||
assert(FaceN >= 0);
|
||||
assert(FaceN < (int)mesh.face.size());
|
||||
assert(mesh.face[FaceN].VN() == (int)SParam.ConstrainedF[i].BarycentricW.size());
|
||||
penalty = ScalarType(1) - SParam.lapWeight;
|
||||
assert(penalty > ScalarType(0) && penalty < ScalarType(1));
|
||||
|
||||
//then add all the weights to impose the constraint
|
||||
for (int j = 0; j < mesh.face[FaceN].VN(); j++)
|
||||
{
|
||||
//get the current weight
|
||||
ScalarType currW = SParam.ConstrainedF[i].BarycentricW[j];
|
||||
|
||||
//get the index of the current vertex
|
||||
int FaceVert = vcg::tri::Index(mesh, mesh.face[FaceN].V(j));
|
||||
|
||||
//then add the constraints componentwise
|
||||
for (int k = 0; k < 3; k++)
|
||||
{
|
||||
//multiply times 3 per component
|
||||
int IndexV = (FaceVert * 3) + k;
|
||||
|
||||
//get the index of the current constraint
|
||||
int ComponentConstraint = (IndexConstraint * 3) + k;
|
||||
IndexC.push_back(std::pair<int, int>(ComponentConstraint, IndexV));
|
||||
|
||||
WeightC.push_back(currW * penalty);
|
||||
|
||||
IndexC.push_back(std::pair<int, int>(IndexV, ComponentConstraint));
|
||||
WeightC.push_back(currW * penalty);
|
||||
|
||||
//this to avoid the 1 on diagonal last entry of mass matrix
|
||||
IndexC.push_back(std::pair<int, int>(ComponentConstraint, ComponentConstraint));
|
||||
WeightC.push_back(-1);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
//get the index of the current constraint
|
||||
int ComponentConstraint = (IndexConstraint * 3) + j;
|
||||
|
||||
//get per component value
|
||||
ScalarType ComponentV = SParam.ConstrainedF[i].TargetPos.V(j);
|
||||
|
||||
//add the diagonal value
|
||||
IndexRhs.push_back(ComponentConstraint);
|
||||
ValueRhs.push_back(ComponentV * penalty);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void MassMatrixEntry(MeshType &m,
|
||||
std::vector<std::pair<int, int>> &index,
|
||||
std::vector<ScalarType> &entry,
|
||||
bool vertexCoord = true)
|
||||
{
|
||||
tri::RequireCompactness(m);
|
||||
|
||||
typename MeshType::template PerVertexAttributeHandle<ScalarType> h =
|
||||
tri::Allocator<MeshType>::template GetPerVertexAttribute<ScalarType>(m, "volume");
|
||||
for (int i = 0; i < m.vn; ++i)
|
||||
h[i] = 0;
|
||||
|
||||
ForEachTetra(m, [&](TetraType &t) {
|
||||
ScalarType v = Tetra::ComputeVolume(t);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
h[tri::Index(m, t.V(i))] += v;
|
||||
});
|
||||
|
||||
ScalarType maxV = 0;
|
||||
for (int i = 0; i < m.vn; ++i)
|
||||
maxV = max(maxV, h[i]);
|
||||
|
||||
for (int i = 0; i < m.vn; ++i)
|
||||
{
|
||||
int currI = i;
|
||||
index.push_back(std::pair<int, int>(currI, currI));
|
||||
entry.push_back(h[i] / maxV);
|
||||
}
|
||||
|
||||
tri::Allocator<MeshType>::template DeletePerVertexAttribute<ScalarType>(m, h);
|
||||
}
|
||||
|
||||
static ScalarType ComputeCotangentWeight(TetraType &t, const int i)
|
||||
{
|
||||
//i is the edge in the tetra
|
||||
tetra::Pos<TetraType> pp(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
|
||||
tetra::Pos<TetraType> pt(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
|
||||
|
||||
ScalarType weight = 0;
|
||||
|
||||
do
|
||||
{
|
||||
CoordType po0 = t.V(Tetra::VofE(5 - pt.E(), 0))->cP();
|
||||
CoordType po1 = t.V(Tetra::VofE(5 - pt.E(), 1))->cP();
|
||||
|
||||
ScalarType length = vcg::Distance(po0, po1);
|
||||
ScalarType cot = std::tan((M_PI / 2.) - Tetra::DihedralAngle(*pt.T(), 5 - pt.E()));
|
||||
|
||||
weight = (length / 6.) * cot;
|
||||
pt.FlipT();
|
||||
pt.FlipF();
|
||||
} while (pp != pt);
|
||||
|
||||
return weight;
|
||||
}
|
||||
|
||||
static void GetLaplacianEntry(MeshType &mesh,
|
||||
TetraType &t,
|
||||
std::vector<std::pair<int, int>> &index,
|
||||
std::vector<ScalarType> &entry,
|
||||
bool cotangent,
|
||||
ScalarType weight = 1,
|
||||
bool vertexCoord = true)
|
||||
{
|
||||
// if (cotangent)
|
||||
// vcg::tri::MeshAssert<MeshType>::OnlyT(mesh);
|
||||
//iterate on edges
|
||||
for (int i = 0; i < 6; ++i)
|
||||
{
|
||||
weight = 1;//ComputeCotangentWeight(t, i);
|
||||
|
||||
int indexV0 = Index(mesh, t.V(Tetra::VofE(i, 0)));
|
||||
int indexV1 = Index(mesh, t.V(Tetra::VofE(i, 1)));
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
//multiply by 3 and add the component
|
||||
int currI0 = (indexV0 * 3) + j;
|
||||
int currI1 = (indexV1 * 3) + j;
|
||||
|
||||
index.push_back(std::pair<int, int>(currI0, currI0));
|
||||
entry.push_back(weight);
|
||||
index.push_back(std::pair<int, int>(currI0, currI1));
|
||||
entry.push_back(-weight);
|
||||
|
||||
index.push_back(std::pair<int, int>(currI1, currI1));
|
||||
entry.push_back(weight);
|
||||
index.push_back(std::pair<int, int>(currI1, currI0));
|
||||
entry.push_back(-weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void GetLaplacianMatrix(MeshType &mesh,
|
||||
std::vector<std::pair<int, int>> &index,
|
||||
std::vector<ScalarType> &entry,
|
||||
bool cotangent,
|
||||
ScalarType weight = 1,
|
||||
bool vertexCoord = true)
|
||||
{
|
||||
//store the index and the scalar for the sparse matrix
|
||||
ForEachTetra(mesh, [&](TetraType &t) {
|
||||
GetLaplacianEntry(mesh, t, index, entry, cotangent, weight);
|
||||
});
|
||||
}
|
||||
|
||||
public:
|
||||
static void Compute(MeshType &mesh, Parameter &SParam)
|
||||
{
|
||||
//calculate the size of the system
|
||||
int matr_size = mesh.vert.size() + SParam.ConstrainedF.size();
|
||||
|
||||
//the laplacian and the mass matrix
|
||||
Eigen::SparseMatrix<ScalarType> L, M, B;
|
||||
|
||||
//initialize the mass matrix
|
||||
std::vector<std::pair<int, int>> IndexM;
|
||||
std::vector<ScalarType> ValuesM;
|
||||
|
||||
//add the entries for mass matrix
|
||||
if (SParam.useMassMatrix)
|
||||
MassMatrixEntry(mesh, IndexM, ValuesM, !SParam.SmoothQ);
|
||||
|
||||
//then add entries for lagrange mult due to barycentric constraints
|
||||
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
|
||||
{
|
||||
int baseIndex = (mesh.vert.size() + i) * 3;
|
||||
|
||||
if (SParam.SmoothQ)
|
||||
baseIndex = (mesh.vert.size() + i);
|
||||
|
||||
if (SParam.SmoothQ)
|
||||
{
|
||||
IndexM.push_back(std::pair<int, int>(baseIndex, baseIndex));
|
||||
ValuesM.push_back(1);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
IndexM.push_back(std::pair<int, int>(baseIndex + j, baseIndex + j));
|
||||
ValuesM.push_back(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
//add the hard constraints
|
||||
CollectHardConstraints(mesh, SParam, IndexM, ValuesM, SParam.SmoothQ);
|
||||
|
||||
//initialize sparse mass matrix
|
||||
if (!SParam.SmoothQ)
|
||||
InitSparse(IndexM, ValuesM, matr_size * 3, matr_size * 3, M);
|
||||
else
|
||||
InitSparse(IndexM, ValuesM, matr_size, matr_size, M);
|
||||
|
||||
//initialize the barycentric matrix
|
||||
std::vector<std::pair<int, int>> IndexB;
|
||||
std::vector<ScalarType> ValuesB;
|
||||
|
||||
std::vector<int> IndexRhs;
|
||||
std::vector<ScalarType> ValuesRhs;
|
||||
|
||||
//then also collect hard constraints
|
||||
if (!SParam.SmoothQ)
|
||||
{
|
||||
CollectBarycentricConstraints(mesh, SParam, IndexB, ValuesB, IndexRhs, ValuesRhs);
|
||||
//initialize sparse constraint matrix
|
||||
InitSparse(IndexB, ValuesB, matr_size * 3, matr_size * 3, B);
|
||||
}
|
||||
else
|
||||
InitSparse(IndexB, ValuesB, matr_size, matr_size, B);
|
||||
|
||||
//get the entries for laplacian matrix
|
||||
std::vector<std::pair<int, int>> IndexL;
|
||||
std::vector<ScalarType> ValuesL;
|
||||
GetLaplacianMatrix(mesh, IndexL, ValuesL, SParam.useCotWeight, SParam.lapWeight, !SParam.SmoothQ);
|
||||
|
||||
//initialize sparse laplacian matrix
|
||||
if (!SParam.SmoothQ)
|
||||
InitSparse(IndexL, ValuesL, matr_size * 3, matr_size * 3, L);
|
||||
else
|
||||
InitSparse(IndexL, ValuesL, matr_size, matr_size, L);
|
||||
|
||||
for (int i = 0; i < (SParam.degree - 1); i++)
|
||||
L = L * L;
|
||||
|
||||
//then solve the system
|
||||
Eigen::SparseMatrix<ScalarType> S = (M + B + SParam.lambda * L);
|
||||
|
||||
//SimplicialLDLT
|
||||
Eigen::SimplicialCholesky<Eigen::SparseMatrix<ScalarType>> solver(S);
|
||||
assert(solver.info() == Eigen::Success);
|
||||
|
||||
MatrixXm V;
|
||||
if (!SParam.SmoothQ)
|
||||
V = MatrixXm(matr_size * 3, 1);
|
||||
else
|
||||
V = MatrixXm(matr_size, 1);
|
||||
|
||||
//set the first part of the matrix with vertex values
|
||||
if (!SParam.SmoothQ)
|
||||
{
|
||||
for (size_t i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
int index = i * 3;
|
||||
V(index, 0) = mesh.vert[i].P().X();
|
||||
V(index + 1, 0) = mesh.vert[i].P().Y();
|
||||
V(index + 2, 0) = mesh.vert[i].P().Z();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (size_t i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
int index = i;
|
||||
V(index, 0) = mesh.vert[i].Q();
|
||||
}
|
||||
}
|
||||
|
||||
//then set the second part by considering RHS gien by barycentric constraint
|
||||
for (size_t i = 0; i < IndexRhs.size(); i++)
|
||||
{
|
||||
int index = IndexRhs[i];
|
||||
ScalarType val = ValuesRhs[i];
|
||||
V(index, 0) = val;
|
||||
}
|
||||
|
||||
//solve the system
|
||||
V = solver.solve(M * V).eval();
|
||||
|
||||
//then copy back values
|
||||
if (!SParam.SmoothQ)
|
||||
{
|
||||
for (size_t i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
int index = i * 3;
|
||||
mesh.vert[i].P().X() = V(index, 0);
|
||||
mesh.vert[i].P().Y() = V(index + 1, 0);
|
||||
mesh.vert[i].P().Z() = V(index + 2, 0);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (size_t i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
int index = i;
|
||||
mesh.vert[i].Q() = V(index, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} //end namespace vcg
|
||||
|
||||
#endif
|
||||
|
|
@ -194,6 +194,26 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
static void VertexBorderFromTT(MeshType &m)
|
||||
{
|
||||
RequirePerVertexFlags(m);
|
||||
RequireTTAdjacency(m);
|
||||
|
||||
VertexClearB(m);
|
||||
|
||||
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
|
||||
if(!(*ti).IsD())
|
||||
for(int j = 0; j < 4; ++j)
|
||||
{
|
||||
if (tetrahedron::IsBorder(*ti,j))
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
ti->V(Tetra::VofF(j, i))->SetB();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void FaceBorderFromVF(MeshType &m)
|
||||
{
|
||||
RequirePerFaceFlags(m);
|
||||
|
|
|
|||
|
|
@ -165,7 +165,7 @@ public:
|
|||
return _e;
|
||||
}
|
||||
|
||||
/// Return the index of face as seen from the tetrahedron
|
||||
/// Return the index of edge as seen from the tetrahedron
|
||||
inline const char & E() const
|
||||
{
|
||||
return _e;
|
||||
|
|
@ -269,7 +269,7 @@ public:
|
|||
//get the current vertex
|
||||
VertexType *vcurr=T()->V(V());
|
||||
|
||||
//get new tetrahedron according to faceto face topology
|
||||
//get new tetrahedron according to tetra to tetra topology
|
||||
TetraType *nt=T()->TTp(F());
|
||||
char nfa=T()->TTi(F());
|
||||
if (nfa!=-1)
|
||||
|
|
|
|||
Loading…
Reference in New Issue