tetra smooth

This commit is contained in:
T.Alderighi 2018-05-23 17:51:20 +02:00
parent d2dd2d01f0
commit 81a93f7756
4 changed files with 960 additions and 446 deletions

View File

@ -217,26 +217,25 @@ class Smooth
//if we are applying to a tetrahedral mesh: //if we are applying to a tetrahedral mesh:
ForEachTetra(m, [&](TetraType &t) { ForEachTetra(m, [&](TetraType &t) {
for (int i = 0; i < 4; ++i) for (int i = 0; i < 6; ++i)
if (!t.IsB(i)) {
{ VertexPointer v0, v1, vo0, vo1;
VertexPointer v0, v1, v2; v0 = t.V(Tetra::VofE(i, 0));
v0 = t.V(Tetra::VofF(i, 0)); v1 = t.V(Tetra::VofE(i, 1));
v1 = t.V(Tetra::VofF(i, 1));
v2 = t.V(Tetra::VofF(i, 2));
TD[v0].sum += v1->P() * weight; vo0 = t.V(Tetra::VofE(5 - i, 0));
TD[v0].sum += v2->P() * weight; vo1 = t.V(Tetra::VofE(5 - i, 1));
TD[v0].cnt += 2 * weight;
TD[v1].sum += v0->P() * weight; ScalarType angle = Tetra::DihedralAngle(t, 5 - i);
TD[v1].sum += v2->P() * weight; ScalarType length = vcg::Distance(vo0->P(), vo1->P());
TD[v1].cnt += 2 * weight;
TD[v2].sum += v0->P() * weight; weight = (length / 6.) * (tan(M_PI / 2. - angle));
TD[v2].sum += v1->P() * weight;
TD[v2].cnt += 2 * weight; TD[v0].sum += v1->cP() * weight;
} TD[v1].sum += v0->cP() * weight;
TD[v0].cnt += weight;
TD[v1].cnt += weight;
}
}); });
ForEachTetra(m, [&](TetraType &t) { ForEachTetra(m, [&](TetraType &t) {
@ -258,28 +257,28 @@ class Smooth
} }
}); });
ForEachTetra(m, [&](TetraType &t) { // ForEachTetra(m, [&](TetraType &t) {
for (int i = 0; i < 4; ++i) // for (int i = 0; i < 4; ++i)
if (t.IsB(i)) // if (t.IsB(i))
{ // {
VertexPointer v0, v1, v2; // VertexPointer v0, v1, v2;
v0 = t.V(Tetra::VofF(i, 0)); // v0 = t.V(Tetra::VofF(i, 0));
v1 = t.V(Tetra::VofF(i, 1)); // v1 = t.V(Tetra::VofF(i, 1));
v2 = t.V(Tetra::VofF(i, 2)); // v2 = t.V(Tetra::VofF(i, 2));
TD[v0].sum += v1->P() * weight; // TD[v0].sum += v1->P();
TD[v0].sum += v2->P() * weight; // TD[v0].sum += v2->P();
TD[v0].cnt += 2 * weight; // TD[v0].cnt += 2;
TD[v1].sum += v0->P() * weight; // TD[v1].sum += v0->P();
TD[v1].sum += v2->P() * weight; // TD[v1].sum += v2->P();
TD[v1].cnt += 2 * weight; // TD[v1].cnt += 2;
TD[v2].sum += v0->P() * weight; // TD[v2].sum += v0->P();
TD[v2].sum += v1->P() * weight; // TD[v2].sum += v1->P();
TD[v2].cnt += 2 * weight; // TD[v2].cnt += 2;
} // }
}); // });
FaceIterator fi; FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi) for (fi = m.face.begin(); fi != m.face.end(); ++fi)

View File

@ -0,0 +1,495 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_IMPLICIT_TETRA_SMOOTHER
#define __VCG_IMPLICIT_TETRA_SMOOTHER
#include <Eigen/Sparse>
#include <vcg/complex/algorithms/mesh_to_matrix.h>
#include <vcg/complex/algorithms/update/quality.h>
#include <vcg/complex/algorithms/smooth.h>
#define PENALTY 10000
namespace vcg
{
template <class MeshType>
class ImplicitTetraSmoother
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename Eigen::Matrix<ScalarType, Eigen::Dynamic, Eigen::Dynamic> MatrixXm;
public:
struct FaceConstraint
{
int numF;
std::vector<ScalarType> BarycentricW;
CoordType TargetPos;
FaceConstraint()
{
numF = -1;
}
FaceConstraint(int _numF,
const std::vector<ScalarType> &_BarycentricW,
const CoordType &_TargetPos)
{
numF = _numF;
BarycentricW = std::vector<ScalarType>(_BarycentricW.begin(), _BarycentricW.end());
TargetPos = _TargetPos;
}
};
struct Parameter
{
//the amount of smoothness, useful only if we set the mass matrix
ScalarType lambda;
//the use of mass matrix to keep the mesh close to its original position
//(weighted per area distributed on vertices)
bool useMassMatrix;
//this bool is used to fix the border vertices of the mesh or not
bool fixBorder;
//this bool is used to set if cotangent weight is used, this flag to false means uniform laplacian
bool useCotWeight;
//use this weight for the laplacian when the cotangent one is not used
ScalarType lapWeight;
//the set of fixed vertices
std::vector<int> FixedV;
//the set of faces for barycentric constraints
std::vector<FaceConstraint> ConstrainedF;
//the degree of laplacian
int degree;
//this is to say if we smooth the positions or the quality
bool SmoothQ;
Parameter()
{
degree = 2;
lambda = 0.05;
useMassMatrix = true;
fixBorder = true;
useCotWeight = false;
lapWeight = 1;
SmoothQ = false;
}
};
private:
static void InitSparse(const std::vector<std::pair<int, int>> &Index,
const std::vector<ScalarType> &Values,
const int m,
const int n,
Eigen::SparseMatrix<ScalarType> &X)
{
assert(Index.size() == Values.size());
std::vector<Eigen::Triplet<ScalarType>> IJV;
IJV.reserve(Index.size());
for (size_t i = 0; i < Index.size(); i++)
{
int row = Index[i].first;
int col = Index[i].second;
ScalarType val = Values[i];
assert(row < m);
assert(col < n);
IJV.push_back(Eigen::Triplet<ScalarType>(row, col, val));
}
X.resize(m, n);
X.setFromTriplets(IJV.begin(), IJV.end());
}
static void CollectHardConstraints(MeshType &mesh, const Parameter &SParam,
std::vector<std::pair<int, int>> &IndexC,
std::vector<ScalarType> &WeightC,
bool SmoothQ = false)
{
std::vector<int> To_Fix;
//collect fixed vert
if (SParam.fixBorder)
{
//add penalization constra
for (size_t i = 0; i < mesh.vert.size(); i++)
{
if (!mesh.vert[i].IsB())
continue;
To_Fix.push_back(i);
}
}
//add additional fixed vertices constraint
To_Fix.insert(To_Fix.end(), SParam.FixedV.begin(), SParam.FixedV.end());
//sort and make them unique
std::sort(To_Fix.begin(), To_Fix.end());
typename std::vector<int>::iterator it = std::unique(To_Fix.begin(), To_Fix.end());
To_Fix.resize(std::distance(To_Fix.begin(), it));
for (size_t i = 0; i < To_Fix.size(); i++)
{
if (!SmoothQ)
{
for (int j = 0; j < 3; j++)
{
int IndexV = (To_Fix[i] * 3) + j;
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}
else
{
int IndexV = To_Fix[i];
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}
}
static void CollectBarycentricConstraints(MeshType &mesh,
const Parameter &SParam,
std::vector<std::pair<int, int>> &IndexC,
std::vector<ScalarType> &WeightC,
std::vector<int> &IndexRhs,
std::vector<ScalarType> &ValueRhs)
{
ScalarType penalty;
int baseIndex = mesh.vert.size();
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
{
//get the index of the current constraint
int IndexConstraint = baseIndex + i;
//add one hard constraint
int FaceN = SParam.ConstrainedF[i].numF;
assert(FaceN >= 0);
assert(FaceN < (int)mesh.face.size());
assert(mesh.face[FaceN].VN() == (int)SParam.ConstrainedF[i].BarycentricW.size());
penalty = ScalarType(1) - SParam.lapWeight;
assert(penalty > ScalarType(0) && penalty < ScalarType(1));
//then add all the weights to impose the constraint
for (int j = 0; j < mesh.face[FaceN].VN(); j++)
{
//get the current weight
ScalarType currW = SParam.ConstrainedF[i].BarycentricW[j];
//get the index of the current vertex
int FaceVert = vcg::tri::Index(mesh, mesh.face[FaceN].V(j));
//then add the constraints componentwise
for (int k = 0; k < 3; k++)
{
//multiply times 3 per component
int IndexV = (FaceVert * 3) + k;
//get the index of the current constraint
int ComponentConstraint = (IndexConstraint * 3) + k;
IndexC.push_back(std::pair<int, int>(ComponentConstraint, IndexV));
WeightC.push_back(currW * penalty);
IndexC.push_back(std::pair<int, int>(IndexV, ComponentConstraint));
WeightC.push_back(currW * penalty);
//this to avoid the 1 on diagonal last entry of mass matrix
IndexC.push_back(std::pair<int, int>(ComponentConstraint, ComponentConstraint));
WeightC.push_back(-1);
}
}
for (int j = 0; j < 3; j++)
{
//get the index of the current constraint
int ComponentConstraint = (IndexConstraint * 3) + j;
//get per component value
ScalarType ComponentV = SParam.ConstrainedF[i].TargetPos.V(j);
//add the diagonal value
IndexRhs.push_back(ComponentConstraint);
ValueRhs.push_back(ComponentV * penalty);
}
}
}
static void MassMatrixEntry(MeshType &m,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool vertexCoord = true)
{
tri::RequireCompactness(m);
typename MeshType::template PerVertexAttributeHandle<ScalarType> h =
tri::Allocator<MeshType>::template GetPerVertexAttribute<ScalarType>(m, "volume");
for (int i = 0; i < m.vn; ++i)
h[i] = 0;
ForEachTetra(m, [&](TetraType &t) {
ScalarType v = Tetra::ComputeVolume(t);
for (int i = 0; i < 4; ++i)
h[tri::Index(m, t.V(i))] += v;
});
ScalarType maxV = 0;
for (int i = 0; i < m.vn; ++i)
maxV = max(maxV, h[i]);
for (int i = 0; i < m.vn; ++i)
{
int currI = i;
index.push_back(std::pair<int, int>(currI, currI));
entry.push_back(h[i] / maxV);
}
tri::Allocator<MeshType>::template DeletePerVertexAttribute<ScalarType>(m, h);
}
static ScalarType ComputeCotangentWeight(TetraType &t, const int i)
{
//i is the edge in the tetra
tetra::Pos<TetraType> pp(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
tetra::Pos<TetraType> pt(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
ScalarType weight = 0;
do
{
CoordType po0 = t.V(Tetra::VofE(5 - pt.E(), 0))->cP();
CoordType po1 = t.V(Tetra::VofE(5 - pt.E(), 1))->cP();
ScalarType length = vcg::Distance(po0, po1);
ScalarType cot = std::tan((M_PI / 2.) - Tetra::DihedralAngle(*pt.T(), 5 - pt.E()));
weight = (length / 6.) * cot;
pt.FlipT();
pt.FlipF();
} while (pp != pt);
return weight;
}
static void GetLaplacianEntry(MeshType &mesh,
TetraType &t,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool cotangent,
ScalarType weight = 1,
bool vertexCoord = true)
{
// if (cotangent)
// vcg::tri::MeshAssert<MeshType>::OnlyT(mesh);
//iterate on edges
for (int i = 0; i < 6; ++i)
{
weight = 1;//ComputeCotangentWeight(t, i);
int indexV0 = Index(mesh, t.V(Tetra::VofE(i, 0)));
int indexV1 = Index(mesh, t.V(Tetra::VofE(i, 1)));
for (int j = 0; j < 3; j++)
{
//multiply by 3 and add the component
int currI0 = (indexV0 * 3) + j;
int currI1 = (indexV1 * 3) + j;
index.push_back(std::pair<int, int>(currI0, currI0));
entry.push_back(weight);
index.push_back(std::pair<int, int>(currI0, currI1));
entry.push_back(-weight);
index.push_back(std::pair<int, int>(currI1, currI1));
entry.push_back(weight);
index.push_back(std::pair<int, int>(currI1, currI0));
entry.push_back(-weight);
}
}
}
static void GetLaplacianMatrix(MeshType &mesh,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool cotangent,
ScalarType weight = 1,
bool vertexCoord = true)
{
//store the index and the scalar for the sparse matrix
ForEachTetra(mesh, [&](TetraType &t) {
GetLaplacianEntry(mesh, t, index, entry, cotangent, weight);
});
}
public:
static void Compute(MeshType &mesh, Parameter &SParam)
{
//calculate the size of the system
int matr_size = mesh.vert.size() + SParam.ConstrainedF.size();
//the laplacian and the mass matrix
Eigen::SparseMatrix<ScalarType> L, M, B;
//initialize the mass matrix
std::vector<std::pair<int, int>> IndexM;
std::vector<ScalarType> ValuesM;
//add the entries for mass matrix
if (SParam.useMassMatrix)
MassMatrixEntry(mesh, IndexM, ValuesM, !SParam.SmoothQ);
//then add entries for lagrange mult due to barycentric constraints
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
{
int baseIndex = (mesh.vert.size() + i) * 3;
if (SParam.SmoothQ)
baseIndex = (mesh.vert.size() + i);
if (SParam.SmoothQ)
{
IndexM.push_back(std::pair<int, int>(baseIndex, baseIndex));
ValuesM.push_back(1);
}
else
{
for (int j = 0; j < 3; j++)
{
IndexM.push_back(std::pair<int, int>(baseIndex + j, baseIndex + j));
ValuesM.push_back(1);
}
}
}
//add the hard constraints
CollectHardConstraints(mesh, SParam, IndexM, ValuesM, SParam.SmoothQ);
//initialize sparse mass matrix
if (!SParam.SmoothQ)
InitSparse(IndexM, ValuesM, matr_size * 3, matr_size * 3, M);
else
InitSparse(IndexM, ValuesM, matr_size, matr_size, M);
//initialize the barycentric matrix
std::vector<std::pair<int, int>> IndexB;
std::vector<ScalarType> ValuesB;
std::vector<int> IndexRhs;
std::vector<ScalarType> ValuesRhs;
//then also collect hard constraints
if (!SParam.SmoothQ)
{
CollectBarycentricConstraints(mesh, SParam, IndexB, ValuesB, IndexRhs, ValuesRhs);
//initialize sparse constraint matrix
InitSparse(IndexB, ValuesB, matr_size * 3, matr_size * 3, B);
}
else
InitSparse(IndexB, ValuesB, matr_size, matr_size, B);
//get the entries for laplacian matrix
std::vector<std::pair<int, int>> IndexL;
std::vector<ScalarType> ValuesL;
GetLaplacianMatrix(mesh, IndexL, ValuesL, SParam.useCotWeight, SParam.lapWeight, !SParam.SmoothQ);
//initialize sparse laplacian matrix
if (!SParam.SmoothQ)
InitSparse(IndexL, ValuesL, matr_size * 3, matr_size * 3, L);
else
InitSparse(IndexL, ValuesL, matr_size, matr_size, L);
for (int i = 0; i < (SParam.degree - 1); i++)
L = L * L;
//then solve the system
Eigen::SparseMatrix<ScalarType> S = (M + B + SParam.lambda * L);
//SimplicialLDLT
Eigen::SimplicialCholesky<Eigen::SparseMatrix<ScalarType>> solver(S);
assert(solver.info() == Eigen::Success);
MatrixXm V;
if (!SParam.SmoothQ)
V = MatrixXm(matr_size * 3, 1);
else
V = MatrixXm(matr_size, 1);
//set the first part of the matrix with vertex values
if (!SParam.SmoothQ)
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i * 3;
V(index, 0) = mesh.vert[i].P().X();
V(index + 1, 0) = mesh.vert[i].P().Y();
V(index + 2, 0) = mesh.vert[i].P().Z();
}
}
else
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i;
V(index, 0) = mesh.vert[i].Q();
}
}
//then set the second part by considering RHS gien by barycentric constraint
for (size_t i = 0; i < IndexRhs.size(); i++)
{
int index = IndexRhs[i];
ScalarType val = ValuesRhs[i];
V(index, 0) = val;
}
//solve the system
V = solver.solve(M * V).eval();
//then copy back values
if (!SParam.SmoothQ)
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i * 3;
mesh.vert[i].P().X() = V(index, 0);
mesh.vert[i].P().Y() = V(index + 1, 0);
mesh.vert[i].P().Z() = V(index + 2, 0);
}
}
else
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i;
mesh.vert[i].Q() = V(index, 0);
}
}
}
};
} //end namespace vcg
#endif

View File

@ -40,466 +40,486 @@ class UpdateFlags
{ {
public: public:
typedef UpdateMeshType MeshType; typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType; typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer; typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType; typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer; typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator; typedef typename MeshType::TetraIterator TetraIterator;
/// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags) /// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags)
static void Clear(MeshType &m) static void Clear(MeshType &m)
{ {
if(HasPerVertexFlags(m) ) if(HasPerVertexFlags(m) )
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
(*vi).Flags() = 0; (*vi).Flags() = 0;
if(HasPerEdgeFlags(m) ) if(HasPerEdgeFlags(m) )
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
(*ei).Flags() = 0; (*ei).Flags() = 0;
if(HasPerFaceFlags(m) ) if(HasPerFaceFlags(m) )
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
(*fi).Flags() = 0; (*fi).Flags() = 0;
if(HasPerTetraFlags(m) ) if(HasPerTetraFlags(m) )
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
(*ti).Flags() = 0; (*ti).Flags() = 0;
} }
static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff) static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{ {
RequirePerVertexFlags(m); RequirePerVertexFlags(m);
int andMask = ~FlagMask; int andMask = ~FlagMask;
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() &= andMask ; if(!(*vi).IsD()) (*vi).Flags() &= andMask ;
} }
static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff) static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{ {
RequirePerEdgeFlags(m); RequirePerEdgeFlags(m);
int andMask = ~FlagMask; int andMask = ~FlagMask;
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() &= andMask ; if(!(*ei).IsD()) (*ei).Flags() &= andMask ;
} }
static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff) static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{ {
RequirePerFaceFlags(m); RequirePerFaceFlags(m);
int andMask = ~FlagMask; int andMask = ~FlagMask;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() &= andMask ; if(!(*fi).IsD()) (*fi).Flags() &= andMask ;
} }
static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff) static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{ {
RequirePerTetraFlags(m); RequirePerTetraFlags(m);
int andMask = ~FlagMask; int andMask = ~FlagMask;
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() &= andMask ; if(!(*ti).IsD()) (*ti).Flags() &= andMask ;
} }
static void VertexSet(MeshType &m, unsigned int FlagMask) static void VertexSet(MeshType &m, unsigned int FlagMask)
{ {
RequirePerVertexFlags(m); RequirePerVertexFlags(m);
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ; if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ;
} }
static void EdgeSet(MeshType &m, unsigned int FlagMask) static void EdgeSet(MeshType &m, unsigned int FlagMask)
{ {
RequirePerEdgeFlags(m); RequirePerEdgeFlags(m);
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ; if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ;
} }
static void FaceSet(MeshType &m, unsigned int FlagMask) static void FaceSet(MeshType &m, unsigned int FlagMask)
{ {
RequirePerFaceFlags(m); RequirePerFaceFlags(m);
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ; if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ;
} }
static void TetraSet(MeshType &m, unsigned int FlagMask) static void TetraSet(MeshType &m, unsigned int FlagMask)
{ {
RequirePerTetraFlags(m); RequirePerTetraFlags(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti) for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ; if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ;
} }
static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);} static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);}
static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);} static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);}
static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);} static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);}
static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);} static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);}
static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);} static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);}
static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);} static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);}
static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);} static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);}
static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);} static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);}
static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); } static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); }
static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);} static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);}
static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);} static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);}
static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);} static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);}
static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);} static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);}
static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);} static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);}
static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);} static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);}
static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);} static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);}
static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); } static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); }
static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); } static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); }
static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); } static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); }
static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); } static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); }
static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); } static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); }
static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); } static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); }
/// \brief Compute the border flags for the faces using the Face-Face Topology. /// \brief Compute the border flags for the faces using the Face-Face Topology.
/** /**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace ) \warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/ */
static void FaceBorderFromFF(MeshType &m) static void FaceBorderFromFF(MeshType &m)
{ {
RequirePerFaceFlags(m); RequirePerFaceFlags(m);
RequireFFAdjacency(m); RequireFFAdjacency(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<fi->VN();++j) for(int j=0;j<fi->VN();++j)
{ {
if(face::IsBorder(*fi,j)) (*fi).SetB(j); if(face::IsBorder(*fi,j)) (*fi).SetB(j);
else (*fi).ClearB(j); else (*fi).ClearB(j);
} }
} }
/// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology. /// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology.
/** /**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace ) \warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/ */
static void TetraBorderFromTT(MeshType &m) static void TetraBorderFromTT(MeshType &m)
{
RequirePerTetraFlags(m);
RequireTTAdjacency(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (tetrahedron::IsBorder(*ti,j)) (*ti).SetB(j);
else (*ti).ClearB(j);
}
}
static void FaceBorderFromVF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireVFAdjacency(m);
FaceClearB(m);
int visitedBit=VertexType::NewBitFlag();
// Calcolo dei bordi
// per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola
// (o meglio da un numero dispari di facce)
const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2};
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V1(vfi.z)->SetUserBit(visitedBit);
if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V2(vfi.z)->SetUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[vfi.z];
if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3];
}
}
VertexType::DeleteBitFlag(visitedBit);
}
class EdgeSorter
{
public:
VertexPointer v[2]; // Puntatore ai due vertici (Ordinati)
FacePointer f; // Puntatore alla faccia generatrice
int z; // Indice dell'edge nella faccia
EdgeSorter() {} // Nothing to do
void Set( const FacePointer pf, const int nz )
{ {
assert(pf!=0); RequirePerTetraFlags(m);
assert(nz>=0); RequireTTAdjacency(m);
assert(nz<3);
v[0] = pf->V(nz); for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
v[1] = pf->V((nz+1)%3); if(!(*ti).IsD())
assert(v[0] != v[1]); for(int j = 0; j < 4; ++j)
{
if( v[0] > v[1] ) std::swap(v[0],v[1]); if (tetrahedron::IsBorder(*ti,j)) (*ti).SetB(j);
f = pf; else (*ti).ClearB(j);
z = nz; }
} }
inline bool operator < ( const EdgeSorter & pe ) const { static void VertexBorderFromTT(MeshType &m)
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const EdgeSorter & pe ) const
{ {
return v[0]==pe.v[0] && v[1]==pe.v[1]; RequirePerVertexFlags(m);
RequireTTAdjacency(m);
VertexClearB(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (tetrahedron::IsBorder(*ti,j))
{
for (int i = 0; i < 3; ++i)
ti->V(Tetra::VofF(j, i))->SetB();
}
}
} }
inline bool operator != ( const EdgeSorter & pe ) const
static void FaceBorderFromVF(MeshType &m)
{ {
return v[0]!=pe.v[0] || v[1]!=pe.v[1]; RequirePerFaceFlags(m);
RequireVFAdjacency(m);
FaceClearB(m);
int visitedBit=VertexType::NewBitFlag();
// Calcolo dei bordi
// per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola
// (o meglio da un numero dispari di facce)
const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2};
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V1(vfi.z)->SetUserBit(visitedBit);
if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V2(vfi.z)->SetUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[vfi.z];
if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3];
}
}
VertexType::DeleteBitFlag(visitedBit);
} }
};
class EdgeSorter
{
public:
VertexPointer v[2]; // Puntatore ai due vertici (Ordinati)
FacePointer f; // Puntatore alla faccia generatrice
int z; // Indice dell'edge nella faccia
EdgeSorter() {} // Nothing to do
// versione minimale che non calcola i complex flag. void Set( const FacePointer pf, const int nz )
static void VertexBorderFromNone(MeshType &m)
{
RequirePerVertexFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
if( m.fn == 0 )
return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{ {
(*p).Set(&(*pf),j); assert(pf!=0);
(*pf).ClearB(j); assert(nz>=0);
++p; assert(nz<3);
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps; v[0] = pf->V(nz);
for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario v[1] = pf->V((nz+1)%3);
assert(v[0] != v[1]);
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const EdgeSorter & pe ) const {
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const EdgeSorter & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
inline bool operator != ( const EdgeSorter & pe ) const
{
return v[0]!=pe.v[0] || v[1]!=pe.v[1];
}
};
// versione minimale che non calcola i complex flag.
static void VertexBorderFromNone(MeshType &m)
{ {
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali RequirePerVertexFlags(m);
{
if(pe-ps==1) { std::vector<EdgeSorter> e;
ps->v[0]->SetB(); typename UpdateMeshType::FaceIterator pf;
ps->v[1]->SetB(); typename std::vector<EdgeSorter>::iterator p;
}/* else
if( m.fn == 0 )
return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->v[0]->SetB();
ps->v[1]->SetB();
}/* else
if(pe-ps!=2) { // not twomanyfold! if(pe-ps!=2) { // not twomanyfold!
for(;ps!=pe;++ps) { for(;ps!=pe;++ps) {
ps->v[0]->SetB(); // Si settano border anche i complex. ps->v[0]->SetB(); // Si settano border anche i complex.
ps->v[1]->SetB(); ps->v[1]->SetB();
} }
}*/ }*/
ps = pe; ps = pe;
} }
}
}
/// Computes per-face border flags without requiring any kind of topology
/// It has a O(fn log fn) complexity.
static void FaceBorderFromNone(MeshType &m)
{
RequirePerFaceFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearB();
if( m.fn == 0 )
return;
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
} }
assert(p==e.end()); }
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps; /// Computes per-face border flags without requiring any kind of topology
ps = e.begin();pe=e.begin(); /// It has a O(fn log fn) complexity.
do static void FaceBorderFromNone(MeshType &m)
{ {
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali RequirePerFaceFlags(m);
{
if(pe-ps==1) { std::vector<EdgeSorter> e;
ps->f->SetB(ps->z); typename UpdateMeshType::FaceIterator pf;
} /*else typename std::vector<EdgeSorter>::iterator p;
for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearB();
if( m.fn == 0 )
return;
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
ps = e.begin();pe=e.begin();
do
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->f->SetB(ps->z);
} /*else
if(pe-ps!=2) { // Caso complex!! if(pe-ps!=2) { // Caso complex!!
for(;ps!=pe;++ps) for(;ps!=pe;++ps)
ps->f->SetB(ps->z); // Si settano border anche i complex. ps->f->SetB(ps->z); // Si settano border anche i complex.
}*/ }*/
ps = pe; ps = pe;
} }
if(pe==e.end()) break; if(pe==e.end()) break;
++pe; ++pe;
} while(true); } while(true);
// TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne); // TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne);
}
/// Compute the PerVertex Border flag deriving it from the face-face adjacency
static void VertexBorderFromFaceAdj(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
RequireFFAdjacency(m);
// MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( face::IsBorder(*fi,z))
{
(*fi).V0(z)->SetB();
(*fi).V1(z)->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the border flag of faces
static void VertexBorderFromFaceBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( (*fi).IsB(z) )
{
(*fi).V(z)->SetB();
(*fi).V((*fi).Next(z))->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes)
static void VertexBorderFromEdgeAdj(MeshType &m)
{
RequirePerVertexFlags(m);
RequireEEAdjacency(m);
VertexClearB(m);
for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if (!ei->IsD())
{
for (int z=0; z<2; ++z)
if (edge::IsEdgeBorder(*ei, z))
{
ei->V(z)->SetB();
}
}
}
/// \brief Marks feature edges according to two signed dihedral angles.
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the signed dihedral angle between the normal of two incident faces ,
/// is outside the two given thresholds.
/// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored)
/// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones);
///
/// Optionally it can also mark as feature edges also the boundary edges.
///
static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false )
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is faux (e.g all crease)
FaceClearFaceEdgeS(m);
// Then mark faux only if the signed angle is the range.
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
{
if(!face::IsBorder(*fi,z) )
{
ScalarType angle = DihedralAngleRad(*fi,z);
if(angle<AngleRadNeg || angle>AngleRadPos)
(*fi).SetFaceEdgeS(z);
}
else
{
if(MarkBorderFlag) (*fi).SetFaceEdgeS(z);
}
}
} }
}
/// \brief Selects feature edges according to Face adjacency. /// Compute the PerVertex Border flag deriving it from the face-face adjacency
/// static void VertexBorderFromFaceAdj(MeshType &m)
static void FaceEdgeSelBorder(MeshType &m) {
{ RequirePerFaceFlags(m);
RequirePerFaceFlags(m); RequirePerVertexFlags(m);
RequireFFAdjacency(m); RequireFFAdjacency(m);
//initially Nothing is selected // MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
FaceClearFaceEdgeS(m);
for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi) VertexClearB(m);
if (!fi->IsD()) for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{ if(!(*fi).IsD())
for (int z=0; z<(*fi).VN(); ++z) {
{
if (face::IsBorder(*fi,z)) for(int z=0;z<(*fi).VN();++z)
fi->SetFaceEdgeS(z); if( face::IsBorder(*fi,z))
} {
} (*fi).V0(z)->SetB();
} (*fi).V1(z)->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the border flag of faces
static void VertexBorderFromFaceBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( (*fi).IsB(z) )
{
(*fi).V(z)->SetB();
(*fi).V((*fi).Next(z))->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes)
static void VertexBorderFromEdgeAdj(MeshType &m)
{
RequirePerVertexFlags(m);
RequireEEAdjacency(m);
VertexClearB(m);
for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if (!ei->IsD())
{
for (int z=0; z<2; ++z)
if (edge::IsEdgeBorder(*ei, z))
{
ei->V(z)->SetB();
}
}
}
/// \brief Marks feature edges according to two signed dihedral angles.
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the signed dihedral angle between the normal of two incident faces ,
/// is outside the two given thresholds.
/// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored)
/// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones);
///
/// Optionally it can also mark as feature edges also the boundary edges.
///
static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false )
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is faux (e.g all crease)
FaceClearFaceEdgeS(m);
// Then mark faux only if the signed angle is the range.
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
{
if(!face::IsBorder(*fi,z) )
{
ScalarType angle = DihedralAngleRad(*fi,z);
if(angle<AngleRadNeg || angle>AngleRadPos)
(*fi).SetFaceEdgeS(z);
}
else
{
if(MarkBorderFlag) (*fi).SetFaceEdgeS(z);
}
}
}
}
/// \brief Selects feature edges according to Face adjacency.
///
static void FaceEdgeSelBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is selected
FaceClearFaceEdgeS(m);
for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
for (int z=0; z<(*fi).VN(); ++z)
{
if (face::IsBorder(*fi,z))
fi->SetFaceEdgeS(z);
}
}
}
/// \brief Marks feature edges according to a given angle
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the dihedral angle between the normal of two incident faces is larger than ,
/// the given thresholds.
/// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored)
static void FaceEdgeSelCrease(MeshType &m,float AngleRad)
{
FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad);
}
/// \brief Marks feature edges according to a given angle
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the dihedral angle between the normal of two incident faces is larger than ,
/// the given thresholds.
/// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored)
static void FaceEdgeSelCrease(MeshType &m,float AngleRad)
{
FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad);
}
}; // end class }; // end class
} // End namespace tri } // End namespace tri

View File

@ -165,7 +165,7 @@ public:
return _e; return _e;
} }
/// Return the index of face as seen from the tetrahedron /// Return the index of edge as seen from the tetrahedron
inline const char & E() const inline const char & E() const
{ {
return _e; return _e;
@ -269,7 +269,7 @@ public:
//get the current vertex //get the current vertex
VertexType *vcurr=T()->V(V()); VertexType *vcurr=T()->V(V());
//get new tetrahedron according to faceto face topology //get new tetrahedron according to tetra to tetra topology
TetraType *nt=T()->TTp(F()); TetraType *nt=T()->TTp(F());
char nfa=T()->TTi(F()); char nfa=T()->TTi(F());
if (nfa!=-1) if (nfa!=-1)