210 lines
7.5 KiB
C++
210 lines
7.5 KiB
C++
#include "elementalmesh.hpp"
|
|
|
|
SimulationMesh::SimulationMesh(FlatPattern &pattern) {
|
|
vcg::tri::MeshAssert<FlatPattern>::VertexNormalNormalized(pattern);
|
|
|
|
vcg::tri::Append<VCGEdgeMesh, ConstVCGEdgeMesh>::MeshCopy(*this, pattern);
|
|
elements = vcg::tri::Allocator<VCGEdgeMesh>::GetPerEdgeAttribute<Element>(
|
|
*this, std::string("Elements"));
|
|
nodes = vcg::tri::Allocator<VCGEdgeMesh>::GetPerVertexAttribute<Node>(
|
|
*this, std::string("Nodes"));
|
|
vcg::tri::UpdateTopology<VCGEdgeMesh>::VertexEdge(*this);
|
|
initializeNodes();
|
|
initializeElements();
|
|
label = pattern.getLabel();
|
|
eigenEdges = pattern.getEigenEdges();
|
|
eigenVertices = pattern.getEigenVertices();
|
|
}
|
|
|
|
SimulationMesh::SimulationMesh(SimulationMesh &elementalMesh) {
|
|
vcg::tri::Append<VCGEdgeMesh, ConstVCGEdgeMesh>::MeshCopy(*this,
|
|
elementalMesh);
|
|
elements = vcg::tri::Allocator<VCGEdgeMesh>::GetPerEdgeAttribute<Element>(
|
|
*this, std::string("Elements"));
|
|
nodes = vcg::tri::Allocator<VCGEdgeMesh>::GetPerVertexAttribute<Node>(
|
|
*this, std::string("Nodes"));
|
|
vcg::tri::UpdateTopology<VCGEdgeMesh>::VertexEdge(*this);
|
|
initializeNodes();
|
|
|
|
for (size_t ei = 0; ei < EN(); ei++) {
|
|
elements[ei] = elementalMesh.elements[ei];
|
|
}
|
|
|
|
label = label;
|
|
eigenEdges = elementalMesh.getEigenEdges();
|
|
eigenVertices = elementalMesh.getEigenVertices();
|
|
}
|
|
|
|
void SimulationMesh::computeElementalProperties() {
|
|
const std::vector<CylindricalElementDimensions> elementalDimensions =
|
|
getBeamDimensions();
|
|
const std::vector<ElementMaterial> elementalMaterials = getBeamMaterial();
|
|
assert(EN() == elementalDimensions.size() &&
|
|
elementalDimensions.size() == elementalMaterials.size());
|
|
|
|
for (const EdgeType &e : edge) {
|
|
const EdgeIndex ei = getIndex(e);
|
|
elements[e].properties =
|
|
Element::Properties{elementalDimensions[ei], elementalMaterials[ei]};
|
|
}
|
|
}
|
|
|
|
void SimulationMesh::initializeNodes() {
|
|
// set initial and previous locations,
|
|
for (const VertexType &v : vert) {
|
|
const VertexIndex vi = getIndex(v);
|
|
Node &node = nodes[v];
|
|
node.vi = vi;
|
|
node.initialLocation = v.cP();
|
|
node.previousLocation = v.cP();
|
|
node.initialNormal = v.cN();
|
|
node.derivativeOfNormal.resize(6, VectorType(0, 0, 0));
|
|
|
|
node.displacements[3] =
|
|
v.cN()[0]; // initialize nx diplacement with vertex normal x
|
|
// component
|
|
node.displacements[4] =
|
|
v.cN()[1]; // initialize ny(in the paper) diplacement with vertex
|
|
// normal
|
|
// y component.
|
|
|
|
// Initialize incident elements
|
|
std::vector<VCGEdgeMesh::EdgePointer> incidentElements;
|
|
vcg::edge::VEStarVE(&v, incidentElements);
|
|
assert(
|
|
vcg::tri::IsValidPointer<SimulationMesh>(*this, incidentElements[0]) &&
|
|
incidentElements.size() > 0);
|
|
nodes[v].incidentElements = std::move(incidentElements);
|
|
node.referenceElement = getReferenceElement(v);
|
|
// Initialze alpha angles
|
|
|
|
const EdgeType &referenceElement = *getReferenceElement(v);
|
|
const VectorType t01 =
|
|
computeT1Vector(referenceElement.cP(0), referenceElement.cP(1));
|
|
const VectorType f01 = (t01 - (v.cN() * (t01.dot(v.cN())))).Normalize();
|
|
|
|
for (const VCGEdgeMesh::EdgePointer &ep : nodes[v].incidentElements) {
|
|
assert(referenceElement.cV(0) == ep->cV(0) ||
|
|
referenceElement.cV(0) == ep->cV(1) ||
|
|
referenceElement.cV(1) == ep->cV(0) ||
|
|
referenceElement.cV(1) == ep->cV(1));
|
|
const VectorType t1 = computeT1Vector(*ep);
|
|
const VectorType f1 = t1 - (v.cN() * (t1.dot(v.cN()))).Normalize();
|
|
const EdgeIndex ei = getIndex(ep);
|
|
const double alphaAngle = computeAngle(f01, f1, v.cN());
|
|
node.alphaAngles[ei] = alphaAngle;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimulationMesh::initializeElements() {
|
|
computeElementalProperties();
|
|
for (const EdgeType &e : edge) {
|
|
Element &element = elements[e];
|
|
element.ei = getIndex(e);
|
|
// Initialize lengths
|
|
const VCGEdgeMesh::CoordType p0 = e.cP(0);
|
|
const VCGEdgeMesh::CoordType p1 = e.cP(1);
|
|
const vcg::Segment3<double> s(p0, p1);
|
|
element.initialLength = s.Length();
|
|
element.length = element.initialLength;
|
|
// Initialize const factors
|
|
element.axialConstFactor =
|
|
element.properties.E * element.properties.A / element.initialLength;
|
|
element.torsionConstFactor =
|
|
element.properties.G * element.properties.J / element.initialLength;
|
|
element.firstBendingConstFactor = 2 * element.properties.E *
|
|
element.properties.I2 /
|
|
element.initialLength;
|
|
element.secondBendingConstFactor = 2 * element.properties.E *
|
|
element.properties.I3 /
|
|
element.initialLength;
|
|
element.derivativeT1.resize(
|
|
2, std::vector<VectorType>(6, VectorType(0, 0, 0)));
|
|
element.derivativeT2.resize(
|
|
2, std::vector<VectorType>(6, VectorType(0, 0, 0)));
|
|
element.derivativeT3.resize(
|
|
2, std::vector<VectorType>(6, VectorType(0, 0, 0)));
|
|
element.derivativeT1_jplus1.resize(6);
|
|
element.derivativeT1_j.resize(6);
|
|
element.derivativeT1_jplus1.resize(6);
|
|
element.derivativeT2_j.resize(6);
|
|
element.derivativeT2_jplus1.resize(6);
|
|
element.derivativeT3_j.resize(6);
|
|
element.derivativeT3_jplus1.resize(6);
|
|
element.derivativeR_j.resize(6);
|
|
element.derivativeR_jplus1.resize(6);
|
|
}
|
|
}
|
|
|
|
void SimulationMesh::updateElementalLengths() {
|
|
for (const EdgeType &e : edge) {
|
|
const EdgeIndex ei = getIndex(e);
|
|
const VertexIndex vi0 = getIndex(e.cV(0));
|
|
const VCGEdgeMesh::CoordType p0 = e.cP(0);
|
|
const VertexIndex vi1 = getIndex(e.cV(1));
|
|
const VCGEdgeMesh::CoordType p1 = e.cP(1);
|
|
const vcg::Segment3<double> s(p0, p1);
|
|
const double elementLength = s.Length();
|
|
elements[e].length = elementLength;
|
|
int i = 0;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
SimulationMesh::EdgePointer
|
|
SimulationMesh::getReferenceElement(const VCGEdgeMesh::VertexType &v) {
|
|
const VertexIndex vi = getIndex(v);
|
|
// return nodes[v].incidentElements[0];
|
|
// if (vi == 0 || vi == 1) {
|
|
// return nodes[0].incidentElements[0];
|
|
// }
|
|
|
|
return nodes[v].incidentElements[0];
|
|
}
|
|
|
|
VectorType computeT1Vector(const SimulationMesh::EdgeType &e) {
|
|
return computeT1Vector(e.cP(0), e.cP(1));
|
|
}
|
|
|
|
VectorType computeT1Vector(const CoordType &p0, const CoordType &p1) {
|
|
const VectorType t1 = (p1 - p0).Normalize();
|
|
return t1;
|
|
}
|
|
|
|
Element::LocalFrame computeElementFrame(const CoordType &p0,
|
|
const CoordType &p1,
|
|
const VectorType &elementNormal) {
|
|
const VectorType t1 = computeT1Vector(p0, p1);
|
|
const VectorType t2 = (elementNormal ^ t1).Normalize();
|
|
const VectorType t3 = (t1 ^ t2).Normalize();
|
|
|
|
return Element::LocalFrame{t1, t2, t3};
|
|
}
|
|
|
|
double computeAngle(const VectorType &vector0, const VectorType &vector1,
|
|
const VectorType &normalVector) {
|
|
double cosAngle = vector0.dot(vector1);
|
|
const double epsilon = std::pow(10, -6);
|
|
if (abs(cosAngle) > 1 && abs(cosAngle) < 1 + epsilon) {
|
|
if (cosAngle > 0) {
|
|
cosAngle = 1;
|
|
|
|
} else {
|
|
cosAngle = -1;
|
|
}
|
|
}
|
|
assert(abs(cosAngle) <= 1);
|
|
const double angle =
|
|
acos(cosAngle); // NOTE: I compute the alpha angle not between
|
|
// two consecutive elements but rather between
|
|
// the first and the ith. Is this correct?
|
|
assert(!std::isnan(angle));
|
|
|
|
const VectorType cp = vector0 ^ vector1;
|
|
if (cp.dot(normalVector) < 0) {
|
|
return -angle;
|
|
}
|
|
return angle;
|
|
}
|