forked from moreo/QuaPy
436 lines
16 KiB
Python
436 lines
16 KiB
Python
import itertools
|
|
import json
|
|
import os
|
|
from collections import defaultdict
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from time import time
|
|
import numpy as np
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics import accuracy_score, f1_score
|
|
|
|
from sklearn.datasets import fetch_rcv1, fetch_20newsgroups
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
from ClassifierAccuracy.models_multiclass import *
|
|
from ClassifierAccuracy.util.tabular import Table
|
|
from quapy.protocol import OnLabelledCollectionProtocol, AbstractStochasticSeededProtocol
|
|
from quapy.method.aggregative import EMQ, ACC, KDEyML
|
|
|
|
from quapy.data import LabelledCollection
|
|
from quapy.data.datasets import fetch_UCIMulticlassLabelledCollection, UCI_MULTICLASS_DATASETS, fetch_lequa2022, TWITTER_SENTIMENT_DATASETS_TEST
|
|
from quapy.data.datasets import fetch_reviews
|
|
|
|
|
|
def gen_classifiers():
|
|
param_grid = {
|
|
'C': np.logspace(-4, -4, 9),
|
|
'class_weight': ['balanced', None]
|
|
}
|
|
|
|
yield 'LR', LogisticRegression()
|
|
#yield 'LR-opt', GridSearchCV(LogisticRegression(), param_grid, cv=5, n_jobs=-1)
|
|
#yield 'NB', GaussianNB()
|
|
#yield 'SVM(rbf)', SVC()
|
|
#yield 'SVM(linear)', LinearSVC()
|
|
|
|
|
|
def gen_multi_datasets(only_names=False)-> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]:
|
|
for dataset_name in UCI_MULTICLASS_DATASETS:
|
|
if dataset_name == 'wine-quality':
|
|
continue
|
|
if only_names:
|
|
yield dataset_name, None
|
|
else:
|
|
dataset = fetch_UCIMulticlassLabelledCollection(dataset_name)
|
|
yield dataset_name, split(dataset)
|
|
|
|
# yields the 20 newsgroups dataset
|
|
if only_names:
|
|
yield "20news", None
|
|
else:
|
|
train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))
|
|
test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'))
|
|
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True)
|
|
Xtr = tfidf.fit_transform(train.data)
|
|
Xte = tfidf.transform((test.data))
|
|
train = LabelledCollection(instances=Xtr, labels=train.target)
|
|
U = LabelledCollection(instances=Xte, labels=test.target)
|
|
T, V = train.split_stratified(train_prop=0.5, random_state=0)
|
|
yield "20news", (T, V, U)
|
|
|
|
# yields the T1B@LeQua2022 (training) dataset
|
|
if only_names:
|
|
yield "T1B-LeQua2022", None
|
|
else:
|
|
train, _, _ = fetch_lequa2022(task='T1B')
|
|
yield "T1B-LeQua2022", split(train)
|
|
|
|
|
|
def gen_tweet_datasets(only_names=False)-> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]:
|
|
for dataset_name in TWITTER_SENTIMENT_DATASETS_TEST:
|
|
if only_names:
|
|
yield dataset_name, None
|
|
else:
|
|
data = qp.datasets.fetch_twitter(dataset_name, min_df=3, pickle=True)
|
|
T, V = data.training.split_stratified(0.5, random_state=0)
|
|
U = data.test
|
|
yield dataset_name, (T, V, U)
|
|
|
|
|
|
def gen_bin_datasets(only_names=False) -> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]:
|
|
if only_names:
|
|
for dataset_name in ['imdb', 'CCAT', 'GCAT', 'MCAT']:
|
|
yield dataset_name, None
|
|
else:
|
|
train, U = fetch_reviews('imdb', tfidf=True, min_df=10, pickle=True).train_test
|
|
L, V = train.split_stratified(0.5, random_state=0)
|
|
yield 'imdb', (L, V, U)
|
|
|
|
training = fetch_rcv1(subset='train')
|
|
test = fetch_rcv1(subset='test')
|
|
class_names = training.target_names.tolist()
|
|
for cat in ['CCAT', 'GCAT', 'MCAT']:
|
|
class_idx = class_names.index(cat)
|
|
tr_labels = training.target[:,class_idx].toarray().flatten()
|
|
te_labels = test.target[:,class_idx].toarray().flatten()
|
|
tr = LabelledCollection(training.data, tr_labels)
|
|
U = LabelledCollection(test.data, te_labels)
|
|
L, V = tr.split_stratified(train_prop=0.5, random_state=0)
|
|
yield cat, (L, V, U)
|
|
|
|
|
|
def gen_CAP(h, acc_fn, with_oracle=False)->[str, ClassifierAccuracyPrediction]:
|
|
#yield 'SebCAP', SebastianiCAP(h, acc_fn, ACC)
|
|
# yield 'SebCAP-SLD', SebastianiCAP(h, acc_fn, EMQ, predict_train_prev=not with_oracle)
|
|
#yield 'SebCAP-KDE', SebastianiCAP(h, acc_fn, KDEyML)
|
|
#yield 'SebCAPweight', SebastianiCAP(h, acc_fn, ACC, alpha=0)
|
|
#yield 'PabCAP', PabloCAP(h, acc_fn, ACC)
|
|
# yield 'PabCAP-SLD-median', PabloCAP(h, acc_fn, EMQ, aggr='median')
|
|
yield 'ATC-MC', ATC(h, acc_fn, scoring_fn='maxconf')
|
|
# yield 'ATC-NE', ATC(h, acc_fn, scoring_fn='neg_entropy')
|
|
yield 'DoC', DoC(h, acc_fn, sample_size=qp.environ['SAMPLE_SIZE'])
|
|
|
|
|
|
def gen_CAP_cont_table(h)->[str,CAPContingencyTable]:
|
|
acc_fn = None
|
|
yield 'Naive', NaiveCAP(h, acc_fn)
|
|
yield 'CT-PPS-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()))
|
|
# yield 'CT-PPS-KDE', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.01))
|
|
# yield 'CT-PPS-KDE05', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.05))
|
|
#yield 'QuAcc(EMQ)nxn-noX', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_posteriors=True, add_X=False)
|
|
#yield 'QuAcc(EMQ)nxn', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()))
|
|
#yield 'QuAcc(EMQ)nxn-MC', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxconf=True)
|
|
# yield 'QuAcc(EMQ)nxn-NE', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_negentropy=True)
|
|
#yield 'QuAcc(EMQ)nxn-MIS', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxinfsoft=True)
|
|
#yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
|
|
#yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression()))
|
|
#yield 'CT-PPSh-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()), reuse_h=True)
|
|
#yield 'Equations-ACCh', NsquaredEquationsCAP(h, acc_fn, ACC, reuse_h=True)
|
|
# yield 'Equations-ACC', NsquaredEquationsCAP(h, acc_fn, ACC)
|
|
#yield 'Equations-SLD', NsquaredEquationsCAP(h, acc_fn, EMQ)
|
|
|
|
|
|
def get_method_names():
|
|
mock_h = LogisticRegression()
|
|
return [m for m, _ in gen_CAP(mock_h, None)] + [m for m, _ in gen_CAP_cont_table(mock_h)]
|
|
|
|
|
|
def gen_acc_measure():
|
|
yield 'vanilla_accuracy', vanilla_acc_fn
|
|
yield 'macro-F1', macrof1_fn
|
|
|
|
|
|
def split(data: LabelledCollection):
|
|
train_val, test = data.split_stratified(train_prop=0.66, random_state=0)
|
|
train, val = train_val.split_stratified(train_prop=0.5, random_state=0)
|
|
return train, val, test
|
|
|
|
|
|
def fit_method(method, V):
|
|
tinit = time()
|
|
method.fit(V)
|
|
t_train = time() - tinit
|
|
return method, t_train
|
|
|
|
|
|
def predictionsCAP(method, test_prot, oracle=False):
|
|
tinit = time()
|
|
if not oracle:
|
|
estim_accs = [method.predict(Ui.X) for Ui in test_prot()]
|
|
else:
|
|
estim_accs = [method.predict(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()]
|
|
t_test_ave = (time() - tinit) / test_prot.total()
|
|
return estim_accs, t_test_ave
|
|
|
|
|
|
def predictionsCAPcont_table(method, test_prot, gen_acc_measure, oracle=False):
|
|
estim_accs_dict = {}
|
|
tinit = time()
|
|
if not oracle:
|
|
estim_tables = [method.predict_ct(Ui.X) for Ui in test_prot()]
|
|
else:
|
|
estim_tables = [method.predict_ct(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()]
|
|
for acc_name, acc_fn in gen_acc_measure():
|
|
estim_accs_dict[acc_name] = [acc_fn(cont_table) for cont_table in estim_tables]
|
|
t_test_ave = (time() - tinit) / test_prot.total()
|
|
return estim_accs_dict, t_test_ave
|
|
|
|
|
|
def any_missing(basedir, cls_name, dataset_name, method_name):
|
|
for acc_name, _ in gen_acc_measure():
|
|
if not os.path.exists(getpath(basedir, cls_name, acc_name, dataset_name, method_name)):
|
|
return True
|
|
return False
|
|
|
|
|
|
def true_acc(h:BaseEstimator, acc_fn: callable, U: LabelledCollection):
|
|
y_pred = h.predict(U.X)
|
|
y_true = U.y
|
|
conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=U.classes_)
|
|
return acc_fn(conf_table)
|
|
|
|
|
|
def from_contingency_table(param1, param2):
|
|
if param2 is None and isinstance(param1, np.ndarray) and param1.ndim==2 and (param1.shape[0]==param1.shape[1]):
|
|
return True
|
|
elif isinstance(param1, np.ndarray) and isinstance(param2, np.ndarray) and param1.shape==param2.shape:
|
|
return False
|
|
else:
|
|
raise ValueError('parameters for evaluation function not understood')
|
|
|
|
|
|
def vanilla_acc_fn(param1, param2=None):
|
|
if from_contingency_table(param1, param2):
|
|
return _vanilla_acc_from_ct(param1)
|
|
else:
|
|
return accuracy_score(param1, param2)
|
|
|
|
|
|
def macrof1_fn(param1, param2=None):
|
|
if from_contingency_table(param1, param2):
|
|
return macro_f1_from_ct(param1)
|
|
else:
|
|
return f1_score(param1, param2, average='macro')
|
|
|
|
|
|
def _vanilla_acc_from_ct(cont_table):
|
|
return np.diag(cont_table).sum() / cont_table.sum()
|
|
|
|
|
|
def _f1_bin(tp, fp, fn):
|
|
if tp + fp + fn == 0:
|
|
return 1
|
|
else:
|
|
return (2 * tp) / (2 * tp + fp + fn)
|
|
|
|
|
|
def macro_f1_from_ct(cont_table):
|
|
n = cont_table.shape[0]
|
|
|
|
if n==2:
|
|
tp = cont_table[1,1]
|
|
fp = cont_table[0,1]
|
|
fn = cont_table[1,0]
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
f1_per_class = []
|
|
for i in range(n):
|
|
tp = cont_table[i,i]
|
|
fp = cont_table[:,i].sum() - tp
|
|
fn = cont_table[i,:].sum() - tp
|
|
f1_per_class.append(_f1_bin(tp, fp, fn))
|
|
|
|
return np.mean(f1_per_class)
|
|
|
|
|
|
def microf1(cont_table):
|
|
n = cont_table.shape[0]
|
|
|
|
if n == 2:
|
|
tp = cont_table[1, 1]
|
|
fp = cont_table[0, 1]
|
|
fn = cont_table[1, 0]
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
tp, fp, fn = 0, 0, 0
|
|
for i in range(n):
|
|
tp += cont_table[i, i]
|
|
fp += cont_table[:, i] - tp
|
|
fn += cont_table[i, :] - tp
|
|
return _f1_bin(tp, fp, fn)
|
|
|
|
|
|
def cap_errors(true_acc, estim_acc):
|
|
true_acc = np.asarray(true_acc)
|
|
estim_acc = np.asarray(estim_acc)
|
|
#return (true_acc - estim_acc)**2
|
|
return np.abs(true_acc - estim_acc)
|
|
|
|
|
|
def getpath(basedir, cls_name, acc_name, dataset_name, method_name):
|
|
return f"results/{basedir}/{cls_name}/{acc_name}/{dataset_name}/{method_name}.json"
|
|
|
|
|
|
def open_results(basedir, cls_name, acc_name, dataset_name='*', method_name='*'):
|
|
results = defaultdict(lambda : {'true_acc':[], 'estim_acc':[]})
|
|
if isinstance(method_name, str):
|
|
method_name = [method_name]
|
|
if isinstance(dataset_name, str):
|
|
dataset_name = [dataset_name]
|
|
for dataset_, method_ in itertools.product(dataset_name, method_name):
|
|
path = getpath(basedir, cls_name, acc_name, dataset_, method_)
|
|
for file in glob(path):
|
|
#print(file)
|
|
method = Path(file).name.replace('.json','')
|
|
result = json.load(open(file, 'r'))
|
|
results[method]['true_acc'].extend(result['true_acc'])
|
|
results[method]['estim_acc'].extend(result['estim_acc'])
|
|
return results
|
|
|
|
|
|
def save_json_file(path, data):
|
|
os.makedirs(Path(path).parent, exist_ok=True)
|
|
with open(path, 'w') as f:
|
|
json.dump(data, f)
|
|
|
|
|
|
def save_json_result(path, true_accs, estim_accs, t_train, t_test):
|
|
result = {
|
|
't_train': t_train,
|
|
't_test_ave': t_test,
|
|
'true_acc': true_accs,
|
|
'estim_acc': estim_accs
|
|
}
|
|
save_json_file(path, result)
|
|
|
|
|
|
def get_dataset_stats(path, test_prot, L, V):
|
|
test_prevs = [Ui.prevalence() for Ui in test_prot()]
|
|
shifts = [qp.error.ae(L.prevalence(), Ui_prev) for Ui_prev in test_prevs]
|
|
info = {
|
|
'n_classes': L.n_classes,
|
|
'n_train': len(L),
|
|
'n_val': len(V),
|
|
'train_prev': L.prevalence().tolist(),
|
|
'val_prev': V.prevalence().tolist(),
|
|
'test_prevs': [x.tolist() for x in test_prevs],
|
|
'shifts': [x.tolist() for x in shifts],
|
|
'sample_size': test_prot.sample_size,
|
|
'num_samples': test_prot.total()
|
|
}
|
|
save_json_file(path, info)
|
|
|
|
|
|
def gen_tables(basedir, datasets):
|
|
|
|
|
|
mock_h = LogisticRegression(),
|
|
methods = [method for method, _ in gen_CAP(mock_h, None)] + [method for method, _ in gen_CAP_cont_table(mock_h)]
|
|
classifiers = [classifier for classifier, _ in gen_classifiers()]
|
|
|
|
os.makedirs('./tables', exist_ok=True)
|
|
|
|
with_oracle = 'oracle' in basedir
|
|
|
|
tex_doc = """
|
|
\\documentclass[10pt,a4paper]{article}
|
|
\\usepackage[utf8]{inputenc}
|
|
\\usepackage{amsmath}
|
|
\\usepackage{amsfonts}
|
|
\\usepackage{amssymb}
|
|
\\usepackage{graphicx}
|
|
\\usepackage{tabularx}
|
|
\\usepackage{color}
|
|
\\usepackage{colortbl}
|
|
\\usepackage{xcolor}
|
|
\\begin{document}
|
|
"""
|
|
|
|
for classifier in classifiers:
|
|
for metric in [measure for measure, _ in gen_acc_measure()]:
|
|
|
|
table = Table(datasets, methods, prec_mean=5, clean_zero=True)
|
|
for method, dataset in itertools.product(methods, datasets):
|
|
path = getpath(basedir, classifier, metric, dataset, method)
|
|
if not os.path.exists(path):
|
|
print('missing ', path)
|
|
continue
|
|
results = json.load(open(path, 'r'))
|
|
true_acc = results['true_acc']
|
|
estim_acc = np.asarray(results['estim_acc'])
|
|
if any(np.isnan(estim_acc)):
|
|
print(f'nan values found in {method=} {dataset=}')
|
|
continue
|
|
if any(estim_acc>1.00001):
|
|
print(f'values >1 found in {method=} {dataset=} [max={estim_acc.max()}]')
|
|
continue
|
|
if any(estim_acc<-0.00001):
|
|
print(f'values <0 found in {method=} {dataset=} [min={estim_acc.min()}]')
|
|
continue
|
|
errors = cap_errors(true_acc, estim_acc)
|
|
table.add(dataset, method, errors)
|
|
|
|
tex = table.latexTabular()
|
|
table_name = f'{basedir}_{classifier}_{metric}.tex'
|
|
table_name = table_name.replace('/', '_')
|
|
with open(f'./tables/{table_name}', 'wt') as foo:
|
|
foo.write('\\begin{table}[h]\n')
|
|
foo.write('\\centering\n')
|
|
foo.write('\\resizebox{\\textwidth}{!}{%\n')
|
|
foo.write('\\begin{tabular}{c|'+('c'*len(methods))+'}\n')
|
|
foo.write(tex)
|
|
foo.write('\\end{tabular}%\n')
|
|
foo.write('}\n')
|
|
foo.write('\\caption{Classifier ' + classifier.replace('_', ' ') + ('(oracle)' if with_oracle else '') +
|
|
' evaluated in terms of ' + metric.replace('_', ' ') + '}\n')
|
|
foo.write('\\end{table}\n')
|
|
|
|
tex_doc += "\input{" + table_name + "}\n\n"
|
|
|
|
tex_doc += """
|
|
\\end{document}
|
|
"""
|
|
with open(f'./tables/main.tex', 'wt') as foo:
|
|
foo.write(tex_doc)
|
|
|
|
print("[Tables Done] runing latex")
|
|
os.chdir('./tables/')
|
|
os.system('pdflatex main.tex')
|
|
os.system('rm main.aux main.log')
|
|
|
|
|
|
class ArtificialAccuracyProtocol(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|
|
|
def __init__(self, data: LabelledCollection, h: BaseEstimator, sample_size=None, n_prevalences=101, repeats=10, random_state=0):
|
|
super(ArtificialAccuracyProtocol, self).__init__(random_state)
|
|
self.data = data
|
|
self.h = h
|
|
self.sample_size = qp._get_sample_size(sample_size)
|
|
self.n_prevalences = n_prevalences
|
|
self.repeats = repeats
|
|
self.collator = OnLabelledCollectionProtocol.get_collator('labelled_collection')
|
|
|
|
def accuracy_grid(self):
|
|
grid = np.linspace(0, 1, self.n_prevalences)
|
|
grid = np.repeat(grid, self.repeats, axis=0)
|
|
return grid
|
|
|
|
def samples_parameters(self):
|
|
# issue predictions
|
|
label_predictions = self.h.predict(self.data.X)
|
|
correct = label_predictions == self.data.y
|
|
self.data_evaluated = LabelledCollection(self.data.X, labels=correct, classes=[0,1])
|
|
indexes = []
|
|
for acc_value in self.accuracy_grid():
|
|
index = self.data_evaluated.sampling_index(self.sample_size, acc_value)
|
|
indexes.append(index)
|
|
return indexes
|
|
|
|
def sample(self, index):
|
|
return self.data.sampling_from_index(index)
|
|
|
|
def total(self):
|
|
return self.n_prevalences * self.repeats
|
|
|