forked from moreo/QuaPy
60 lines
2.3 KiB
Python
60 lines
2.3 KiB
Python
from sklearn.decomposition import TruncatedSVD
|
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
import quapy as qp
|
|
from data import LabelledCollection
|
|
from method.non_aggregative import DMx
|
|
from protocol import APP
|
|
from quapy.method.aggregative import CC, DMy, ACC
|
|
from sklearn.svm import LinearSVC
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
qp.environ['SAMPLE_SIZE'] = 500
|
|
|
|
def cls():
|
|
return LogisticRegressionCV(n_jobs=-1,Cs=10)
|
|
|
|
def gen_methods():
|
|
yield CC(cls()), 'CC$_{10' + '\%}$'
|
|
yield ACC(cls()), 'ACC'
|
|
yield DMy(cls(), val_split=10, nbins=10, n_jobs=-1), 'HDy'
|
|
yield DMx(nbins=10, n_jobs=-1), 'HDx'
|
|
|
|
def gen_data():
|
|
|
|
train, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
|
|
|
|
method_data = []
|
|
training_prevalence = 0.1
|
|
training_size = 5000
|
|
# since the problem is binary, it suffices to specify the negative prevalence, since the positive is constrained
|
|
train_sample = train.sampling(training_size, 1-training_prevalence, random_state=0)
|
|
|
|
for model, method_name in tqdm(gen_methods(), total=4):
|
|
with qp.util.temp_seed(1):
|
|
if method_name == 'HDx':
|
|
X, y = train_sample.Xy
|
|
svd = TruncatedSVD(n_components=5, random_state=0)
|
|
Xred = svd.fit_transform(X)
|
|
train_sample_dense = LabelledCollection(Xred, y)
|
|
|
|
X, y = test.Xy
|
|
test_dense = LabelledCollection(svd.transform(X), y)
|
|
|
|
model.fit(train_sample_dense)
|
|
true_prev, estim_prev = qp.evaluation.prediction(model, APP(test_dense, repeats=100, random_state=0))
|
|
else:
|
|
model.fit(train_sample)
|
|
true_prev, estim_prev = qp.evaluation.prediction(model, APP(test, repeats=100, random_state=0))
|
|
method_data.append((method_name, true_prev, estim_prev, train_sample.prevalence()))
|
|
|
|
return zip(*method_data)
|
|
|
|
|
|
method_names, true_prevs, estim_prevs, tr_prevs = gen_data()
|
|
|
|
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, savepath='./plots_cacm/bin_diag_4methods.pdf')
|
|
qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=10, savepath='./plots_cacm/err_drift_4methods.pdf', title='', show_density=False, show_std=True)
|