forked from moreo/QuaPy
63 lines
1.5 KiB
Python
63 lines
1.5 KiB
Python
|
|
import math
|
|
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.model_selection import train_test_split, cross_val_predict
|
|
from sklearn.neighbors import KernelDensity
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from data import LabelledCollection
|
|
|
|
scale = 100
|
|
|
|
|
|
import quapy as qp
|
|
|
|
negatives = np.random.normal(loc = 0.2, scale=0.2, size=20000)
|
|
negatives = np.asarray([x for x in negatives if 0 <= x <= 1])
|
|
|
|
positives = np.random.normal(loc = 0.75, scale=0.05, size=20000)
|
|
positives = np.asarray([x for x in positives if 0 <= x <= 1])
|
|
|
|
prev = 0.1
|
|
test = np.concatenate([
|
|
negatives[:int(len(negatives)*(1-prev))],
|
|
positives[:int(len(positives)*(prev))],
|
|
])
|
|
|
|
|
|
nbins = 30
|
|
|
|
plt.rcParams.update({'font.size': 7})
|
|
|
|
fig = plt.figure()
|
|
positions = np.asarray([2,1,0])
|
|
colors = ['r', 'g', 'b']
|
|
|
|
|
|
ax = fig.add_subplot(111, projection='3d')
|
|
ax.set_box_aspect((3, 1, 0.8))
|
|
|
|
for post, c, z in zip([test, positives, negatives], colors, positions):
|
|
|
|
hist, bins = np.histogram(post, bins=np.linspace(0,1, nbins+1), density=True)
|
|
xs = (bins[:-1] + bins[1:])/2
|
|
|
|
ax.bar(xs, hist, width=1 / nbins, zs=z, zdir='y', color=c, ec=c, alpha=0.6)
|
|
|
|
|
|
ax.yaxis.set_ticks(positions)
|
|
ax.yaxis.set_ticklabels([' '*20+'Test distribution', ' '*20+'Positive distribution', ' '*20+'Negative distribution'])
|
|
# ax.xaxis.set_ticks([])
|
|
# ax.xaxis.set_ticklabels([], minor=True)
|
|
ax.zaxis.set_ticks([])
|
|
ax.zaxis.set_ticklabels([], minor=True)
|
|
|
|
|
|
#plt.figure(figsize=(10,6))
|
|
#plt.show()
|
|
plt.savefig('./histograms3d_CACM2023.pdf')
|
|
|
|
|