1
0
Fork 0
QuaPy/CACM2023_plots/plots_CACM2023_3histograms.py

74 lines
1.9 KiB
Python

import itertools
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
palette = itertools.cycle(sns.color_palette())
def setframe():
fig.spines['top'].set_visible(False)
fig.spines['left'].set_visible(False)
fig.get_yaxis().set_ticks([])
fig.spines['right'].set_visible(False)
# fig.axis('off')
nbins = 50
figsize = (5, 2)
ymax = 0.2
negatives = np.random.normal(loc = 0.3, scale=0.2, size=20000)
negatives = np.asarray([x for x in negatives if 0 <= x <= 1])
plt.figure(figsize=figsize)
plt.xlim(0, 1)
plt.ylim(0, ymax)
fig = sns.histplot(data=negatives, binrange=(0,1), bins=nbins, stat='probability', color=next(palette))
plt.title('Negative distribution')
fig.set(yticklabels=[])
fig.set(ylabel=None)
setframe()
# fig.get_figure().savefig('plots_cacm/negatives.pdf')
# plt.clf()
# -------------------------------------------------------------
positives1 = np.random.normal(loc = 0.75, scale=0.06, size=20000)
positives2 = np.random.normal(loc = 0.65, scale=0.1, size=1)
positives = np.concatenate([positives1, positives2])
np.random.shuffle(positives)
positives = np.asarray([x for x in positives if 0 <= x <= 1])
# plt.figure(figsize=figsize)
plt.xlim(0, 1)
plt.ylim(0, ymax)
fig = sns.histplot(data=positives, binrange=(0,1), bins=nbins, stat='probability', color=next(palette))
plt.title('')
fig.set(yticklabels=[])
fig.set(ylabel=None)
setframe()
fig.get_figure().savefig('plots_cacm/training.pdf')
# -------------------------------------------------------------
prev = 0.2
test = np.concatenate([
negatives[:int(len(negatives)*(1-prev))],
positives[:int(len(positives)*(prev))],
])
plt.figure(figsize=figsize)
plt.xlim(0, 1)
plt.ylim(0, ymax)
fig = sns.histplot(data=test, binrange=(0,1), bins=nbins, stat='probability', color=next(palette))
plt.title('')
fig.set(yticklabels=[])
fig.set(ylabel=None)
setframe()
fig.get_figure().savefig('plots_cacm/test.pdf')