1
0
Fork 0
QuaPy/distribution_matching/tables/gen_tables_compact.py

250 lines
7.8 KiB
Python

from distribution_matching.commons import BIN_METHODS, METHODS
import quapy as qp
from os import makedirs
import os
from tabular import Table
import pandas as pd
tables_path = '.'
# makedirs(tables_path, exist_ok=True)
MAXTONE = 35 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
SHOW_STD = False
NUM_ADJUSTMENT_METHODS = 2 if 'ACC' in METHODS else 1
NUM_MAXIMUM_LIKELIHOOD_METHODS = 4 if 'DIR' in METHODS else 3
NUM_DISTRIBUTION_MATCHING_PAIRS = 2
NUM_DISTRIBUTION_MATCHING_METHODS = NUM_DISTRIBUTION_MATCHING_PAIRS*2 + (2 if 'HDy-OvA' in METHODS else 1)
qp.environ['SAMPLE_SIZE'] = 100
nice_bench = {
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
}
nice_method={
'KDEy-MLE': 'KDEy-ML',
'KDEy-DMhd4': 'KDEy-HD',
'KDEy-closed++': 'KDEy-CS',
'EMQ-C': 'EMQ-BCTS'
}
def save_table(path, table):
print(f'saving results in {path}')
with open(path, 'wt') as foo:
foo.write(table)
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
def make_table(tabs, eval, benchmark_groups, benchmark_names, compact=False):
n_methods = len(METHODS)
assert n_methods == (NUM_ADJUSTMENT_METHODS+NUM_DISTRIBUTION_MATCHING_METHODS+NUM_MAXIMUM_LIKELIHOOD_METHODS), \
"Unexpected number of methods"
cline = "\cline{2-" + str(n_methods+ 1) + "}"
# write the latex table
tabular = """
\\begin{tabular}{|c|""" + ('c|' * NUM_ADJUSTMENT_METHODS) + 'c|c' + ('|c|c' * (NUM_DISTRIBUTION_MATCHING_PAIRS)) + ('|c' * NUM_MAXIMUM_LIKELIHOOD_METHODS) + """|} """ + cline + """
\multicolumn{1}{c}{} &
\multicolumn{"""+str(NUM_ADJUSTMENT_METHODS)+"""}{|c}{Adjustment} &
\multicolumn{"""+str(NUM_DISTRIBUTION_MATCHING_METHODS)+"""}{|c|}{Distribution Matching} &
\multicolumn{"""+str(NUM_MAXIMUM_LIKELIHOOD_METHODS)+"""}{c|}{Maximum Likelihood} \\\\
\hline
"""
for i, (tab, group, name) in enumerate(zip(tabs, benchmark_groups, benchmark_names)):
tablines = tab.latexTabular(benchmark_replace=nice_bench, method_replace=nice_method, endl='\\\\'+ cline, aslines=True)
print(tablines)
tablines[0] = tablines[0].replace('\multicolumn{1}{c|}{}', '\\textbf{'+name+'}')
if not compact:
tabular += '\n'.join(tablines)
else:
# if compact, keep the method names and the average; discard the rest
tabular += tablines[0] + '\n' + tablines[-1] + '\n'
tabular += "\n" + "\\textit{Rank} & " + tab.getRankTable(prec_mean=0 if name.startswith('LeQua') else 1).latexAverage()
if i < (len(tabs) - 1):
tabular += "\\hline\n"
else:
tabular += "\n"
tabular += "\end{tabular}"
return tabular
def gen_tables_uci_multiclass(eval):
print('Generating table for UCI Multiclass Datasets', eval)
dir_results = f'../results/ucimulti/{eval}'
datasets = qp.datasets.UCI_MULTICLASS_DATASETS
tab = Table(
benchmarks=datasets,
methods=METHODS,
ttest='wilcoxon',
prec_mean=4,
show_std=SHOW_STD,
prec_std=4,
clean_zero=(eval=='mae'),
average=True,
maxtone=MAXTONE
)
for dataset in datasets:
print(f'\t Dataset: {dataset}: ', end='')
for method in METHODS:
result_path = f'{dir_results}/{method}_{dataset}.dataframe'
if os.path.exists(result_path):
df = pd.read_csv(result_path)
print(f'{method}', end=' ')
tab.add(dataset, method, df[eval].values)
else:
print(f'MISSING-{method}', end=' ')
print()
return tab
def gen_tables_uci_bin(eval):
print('Generating table for UCI Datasets', eval)
dir_results = f'../results/binary/{eval}'
exclude = ['acute.a', 'acute.b', 'iris.1', 'balance.2']
datasets = [x for x in qp.datasets.UCI_DATASETS if x not in exclude]
tab = Table(
benchmarks=datasets,
methods=BIN_METHODS,
ttest='wilcoxon',
prec_mean=4,
show_std=SHOW_STD,
prec_std=4,
clean_zero=(eval=='mae'),
average=True,
maxtone=MAXTONE
)
for dataset in datasets:
print(f'\t Dataset: {dataset}: ', end='')
for method in BIN_METHODS:
result_path = f'{dir_results}/{method}_{dataset}.dataframe'
if os.path.exists(result_path):
df = pd.read_csv(result_path)
print(f'{method}', end=' ')
tab.add(dataset, method, df[eval].values)
else:
print(f'MISSING-{method}', end=' ')
return tab
def gen_tables_tweet(eval):
print('Generating table for Twitter', eval)
dir_results = f'../results/tweet/{eval}'
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
tab = Table(
benchmarks=datasets,
methods=METHODS,
ttest='wilcoxon',
prec_mean=4,
show_std=SHOW_STD,
prec_std=4,
clean_zero=(eval=='mae'),
average=True,
maxtone=MAXTONE
)
for dataset in datasets:
print(f'\t Dataset: {dataset}: ', end='')
for method in METHODS:
result_path = f'{dir_results}/{method}_{dataset}.dataframe'
if os.path.exists(result_path):
df = pd.read_csv(result_path)
print(f'{method}', end=' ')
tab.add(dataset, method, df[eval].values)
else:
print(f'MISSING-{method}', end=' ')
print()
return tab
def gen_tables_lequa(Methods, task, eval):
# generating table for LeQua-T1A or Lequa-T1B; only one table with two rows, one for MAE, another for MRAE
dataset_name = 'LeQua-'+task
tab = Table(
benchmarks=[f'Average'],
methods=Methods,
ttest='wilcoxon',
prec_mean=5,
show_std=SHOW_STD,
prec_std=4,
clean_zero=False,
average=False,
maxtone=MAXTONE
)
print('Generating table for T1A@Lequa', eval, end='')
dir_results = f'../results/lequa/{task}/{eval}'
for method in Methods:
result_path = f'{dir_results}/{method}.dataframe'
if os.path.exists(result_path):
df = pd.read_csv(result_path)
print(f'{method}', end=' ')
tab.add('Average', method, df[eval].values)
else:
print(f'MISSING-{method}', end=' ')
print()
return tab
if __name__ == '__main__':
os.makedirs('./latex', exist_ok=True)
for eval in ['mae', 'mrae']:
tabs = []
tabs.append(gen_tables_tweet(eval))
tabs.append(gen_tables_uci_multiclass(eval))
tabs.append(gen_tables_lequa(METHODS, 'T1B', eval))
names = ['Tweets', 'UCI-multi', 'LeQua-T1B']
table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=names)
save_table(f'./latex/multiclass_{eval}.tex', table)
for eval in ['mae', 'mrae']:
tabs = []
tabs.append(gen_tables_uci_bin(eval))
# print uci-binary with all datasets for the appendix
table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=['UCI-binary'])
save_table(f'./latex/ucibinary_{eval}.tex', table)
# print uci-bin compacted plus lequa-T1A for the main body
tabs.append(gen_tables_lequa(BIN_METHODS, 'T1A', eval))
table = make_table(tabs, eval, benchmark_groups=tabs, benchmark_names=['UCI-binary', 'LeQua-T1A'], compact=True)
save_table(f'./latex/binary_{eval}.tex', table)
print("[Tables Done] runing latex")
os.chdir('./latex/')
os.system('pdflatex tables_compact.tex')
os.system('rm tables_compact.aux tables_compact.bbl tables_compact.blg tables_compact.log tables_compact.out tables_compact.dvi')